Math 290 Midterm Exam 3
Sections 2 and 4 — Winter 2010
Wed, Mar 24 through Thu, Mar 25 – Testing Center
Professor: David Cardon, 302 TMCB, Campus Ext. 2-4863

Instructions:

- There are 25 questions for a total of 100 points.

- Questions 1–20 are true-false and multiple choice questions. Each is worth 3 points. Mark the answers on the bubble sheet.

- Questions 21–25 are essay questions. Each is worth 8 points. Neatly write the answers to the essay questions directly on the exam paper. If a solution requires more space than given, you may continue on the back of the page.

- For the essay questions, you are expected to give complete and clear explanations of the reasoning involved. A final answer without explanation is usually inadequate, except where it is specifically stated that no explanation is necessary.

- Notes, books, and calculators are not allowed.

- No time limit.
True-False and Multiple Choice Section: Questions 1–20

Instructions: On the bubble sheet mark the best answer.

1. Let \(P = \{ A_\alpha : \alpha \in I \} \) be a partition of a nonempty set \(A \). Then there exists an equivalence relation \(R \) on \(A \) such that \(P \) is the set of equivalence classes determined by \(R \).

 (a) True
 (b) False

2. In \(\mathbb{Z}_{12} \), if \([a] \cdot [b] = [0]\), then it follows that \([a] = [0]\) or \([b] = [0]\).

 (a) True
 (b) False

3. There exist functions \(f : A \to B \) and \(g : B \to C \), such that \(f \) is not surjective, but \(g \circ f : A \to C \) is surjective.

 (a) True
 (b) False

4. Let \(f : A \to B \) and \(g : B \to A \) be functions such that \(g \circ f = i_A \), where \(i_A \) is the identity function on \(A \). Then \(f \) is injective and \(g \) is surjective.

 (a) True
 (b) False

5. Let \(f : A \to B \) and \(g : B \to A \) be functions such that \(g \circ f = i_A \), where \(i_A \) is the identity function on \(A \). Then \(g \) is necessarily injective.

 (a) True
 (b) False

6. The mapping \(f : \mathbb{Z} \to \mathbb{Z} \) defined by \(f(x) = 3x + 2 \) is a bijection.

 (a) True
 (b) False

7. The mapping \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = 3x + 2 \) is a bijection.

 (a) True
 (b) False
8. If A, B, and C are nonempty sets such that $A \subset B \subset C$, then $|A| < |B| < |C|$.

(a) True
(b) False

9. Every uncountable set contains a denumerable subset.

(a) True
(b) False

10. A set A is denumerable if and only if there exists an injective function $f : \mathbb{N} \to A$.

(a) True
(b) False

11. In \mathbb{Z}_8, $[-13] \cdot [138] =$

(a) [0] (b) [1] (c) [2] (d) [3] (e) [4] (f) [5] (g) [6] (h) [7]

12. Evaluate the proposed proof of the following result:

Result: The sets $(0, \infty)$ and $[0, \infty)$ are numerically equivalent

Proof. Define the function $f : (0, \infty) \to [0, \infty)$ by $f(x) = x$.

First we show that f is one-to-one. Let $a, b \in (0, \infty)$ and assume that $f(a) = f(b)$. Then $a = b$ and so f is one-to-one.

Next, we show that f is onto. Let $r \in [0, \infty)$. Since $f(r) = r$, the function f is onto.

Since f is bijective, $|(0, \infty)| = |[0, \infty)|$.

Choose the most accurate response.

(a) The proof is correct.
(b) The proof correctly shows that f is one-to-one, but the proof that f is onto has a flaw.
(c) The proof correctly shows that f is onto, but the proof that f is one-to-one has a flaw.
(d) The argument that f is one-to-one has a flaw, and the argument that f is onto also has a flaw.

13. Which of the following functions $f : \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ is injective?

(a) $f([a]) = [5a + 1]$
(b) $f([a]) = [6a + 3]$
(c) $f([a]) = [3a + 2]$
(d) $f([a]) = [2a + 7]$
(e) None of the above.
(f) All of the above.
14. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$. If $f: A \rightarrow B$ is a function, which of the following possibly might represent the relation f^{-1}?

(a) $\{(a, 1), (b, 1), (c, 1)\}$
(b) $\{(1, a), (2, c), (3, b)\}$
(c) $\{(c, 1), (b, 2), (a, 1)\}$
(d) $\{(b, 2), (b, 3), (a, 1)\}$
(e) $\{(1, a), (1, b), (1, c)\}$
(f) None of the above

15. How many equivalence relations are there on the set $A = \{1, 2, 3\}$?

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 8 (h) 256

16. How many functions are there from \mathbb{Z}_4 to \mathbb{Z}_5?

(a) 4 (b) 5 (c) $4! = 24$ (d) $5! = 120$ (e) $4^5 = 1024$ (f) $5^4 = 625$ (g) none of these

17. Which of the following functions would be most useful for proving that $|[0, 1)| = |[1, \infty)|$?

(a) $f(x) = \frac{1}{x}$
(b) $f(x) = \frac{1+x}{x}$
(c) $f(x) = \frac{1}{1+x}$
(d) $f(x) = \frac{1-x}{1+x}$
(e) $f(x) = \frac{x}{x-1}$
(f) $f(x) = \frac{x+1}{x-1}$
(g) $f(x) = \frac{1}{1-x}$
(h) None of the given functions would be useful.

18. Which of the following statements is true?

(a) If A is denumerable, then $|A| = |\mathbb{R}|$.
(b) There exists a surjective function $f: \mathbb{Q} \rightarrow \mathbb{R}$.
(c) If A is uncountable, then $|A| = |\mathbb{R}|$.
(d) If A, B, and C are sets with $A \subseteq B \subseteq C$ such that A and C are countable, then B is countable.
(e) If A is denumerable and A is a proper subset of B, then B is uncountable.
(f) None of the above is true.
19. Let \(\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 1 & 3 & 6 & 5 \end{pmatrix} \) and \(\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 6 & 2 & 5 \end{pmatrix} \). Which of the following is \(\beta \circ \alpha^{-1} \)?

(a) \(\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 6 & 3 & 5 & 2 \end{pmatrix} \)

(b) \(\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 5 & 2 & 6 \end{pmatrix} \)

(c) \(\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 4 & 2 & 5 & 3 \end{pmatrix} \)

(d) \(\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 1 & 4 & 6 \end{pmatrix} \)

(e) None of the above.

20. Which of the following sets has cardinality different from that of the others?

(a) \(\mathbb{R} \)

(b) the open interval \((0, 1)\)

(c) the open interval \((0, 2)\)

(d) the power set of \(\mathbb{N}\)

(e) the power set of \(\mathbb{Q}\)

(f) the power set of \(\mathbb{R}\)

(e) the set \(2^\mathbb{N}\)

(g) All of the sets given above have the same cardinality.
Essay Section: Questions 21–25

Instructions: Neatly write the solutions directly on the exam paper. Complete explanations are required for full credit.

21. Prove that the function \(f : \mathbb{Z}_{13} \to \mathbb{Z}_{13} \) defined by the formula

\[
 f([a]) = [a^2 + a + 2]
\]

is well-defined.
22. Let S be the set of all sequences of zeros and ones. Thus a typical element of S is an ordered
infinite-tuple such as the one illustrated below:

$$(1, 1, 0, 1, 0, 1, 0, 0, 1, \ldots) \in S.$$

Prove that S is uncountable.
23. Let A and B be disjoint denumerable sets. Show that $A \times B$ is denumerable.
24. Let A, B, and C be nonempty sets and suppose $f: A \to B$ and $g: B \to C$ are functions.

(a) If f and g are both injective, show that $g \circ f: A \to C$ is injective.

(b) If f and g are both surjective, show that $g \circ f: A \to C$ is surjective.
25. Let R be the relation defined on \mathbb{Z} by $a R b$ if $2a + b \equiv 0 \pmod{3}$.

(a) Show that R is reflexive.

(b) Show that R is symmetric.

(c) Show that R is transitive.