Supplementary Exercises

- A. Give the least upper bound of the following sets. If the least upper bound does not exist, then say it does not exist.

 - (a) $\left\{x \in \mathbb{R} \mid x \geq 0 \text{ and } x^2 < 2\right\}$ (b) $\left\{\frac{2n}{n+1} \in \mathbb{R} \mid n \in \mathbb{N}\right\}$ (c) $\left\{\frac{p}{q} \in \mathbb{R} \mid p, q \in \mathbb{N}\right\}$
- B. Let S be a nonempty, finite set of real numbers.
 - (a) Explain why S is bounded.
 - (b) What is the least upper bound of S?
 - (c) What is the greatest lower bound of S?
- C. Find the equation of the line with slope -3 passing through the point (1,4).
- D. Find the equation of the line passing through the points (3,2) and (5,5). Express your answer in slope-intercept form.
- E. Find $\lim_{x\to 1} \frac{x^2-1}{x^3-1}$.
- F. Same instructions as problem 10 on page 227.
 - (a) ln(1.005)
 - (b) $e^{.1}$
 - (c) $\sin(5^{\circ})$