Math 110 (College Algebra) Midterm Exam 2 Fall 2014 October 2, 2014 through October 8, 2014

Instructions:

- DO NOT WRITE on the exam.
- Mark the best answer on the bubble sheet provided.
- There is no time limit.
- Books, calculators, and notes are not allowed.
- Please do not talk about the test with other students until after the last day to take the exam.

RED

- 1. Which of the following polynomials has degree 7?
 - a) 7 b) $5x^2(x^2-3)^5$ c) x^7-x^9
 - d) $x(x-3)(x+2)^2(x-1)^3$ e) $x^3 + x^4$ f) $7(x-1)^2 + 13$

2. Determine the interval on which the function $f(x) = x^2 + 3x + 2$ is increasing.

a) (-2, -1) b) $(-\infty, 0)$ c) $(-3, \infty)$

d)
$$(-\frac{3}{2},\infty)$$
 e) $(-\infty,-\frac{1}{4})$ f) $(-2,-\frac{1}{4})$

3. Determine where $f(x) = x^4 + x^3 - 12x^2 < 0$.

- a) $(-4,0) \cup (3,\infty)$ b) $(-4,0) \cup (0,3)$
- c) $(-\infty, -4) \cup (0, 3)$ d) $(-\infty, -4) \cup (3, \infty)$
- e) All real numbers. f) f(x) is nowhere positive.
- 4. What is the domain of $R(x) = \frac{x^3}{x^4 + x^2}$?
 - a) $\{x | x \neq 0\}$ b) $\{x | x \neq 0, x \neq -1\}$
 - c) $\{x | x \neq 0, x \neq -1, x \neq 1\}$ d) $\{x | x \neq -1, x \neq 1\}$
 - e) $\{x | x \neq -1\}$ f) All real numbers.

5. Find all the vertical asymptotes of $f(x) = \frac{x^2 - 4x + 3}{x^2 - 1}$.

- a) x = 3, 1 b) x = 1 c) x = -1
- d) $x = \sqrt{2}$ e) x = -3, -1 f) x = -1, 1

6. What is the equation of the oblique asymptote of $R(x) = \frac{5x^4 - 2x^3 + 1}{x^3 - x^2 + 1}$?

- a) y = 5x b) y = 5x + 1 c) y = 5x 1
- d) y = 5x + 2 e) y = 5x 2 f) y = 5x + 3

Continue to Next Page

7. Consider the graph. Which of the following is a candidate function for this graph?

- a) $\frac{-2(x+2)^{2}(x-4)}{(x+4)(x-2)^{2}}$ b) $\frac{2(x+2)^{2}(x-4)}{(x+4)(x-2)^{2}}$ c) $\frac{2(x-2)^{2}(x+4)}{(x-4)(x+2)^{2}}$ d) $\frac{(x-2)^{2}(x+4)}{(x-4)(x+2)}$ e) $\frac{(x+2)^{2}(x-4)}{(x-4)(x+2)}$ f) $\frac{(x+2)^{2}(x-4)}{2(x+4)^{2}(x-2)}$ 8. Where is $\frac{x+1}{x^{2}-4}$ positive?
 - a) $(-\infty, -2) \cup (-1, 2)$
 - c) $(-2, -1) \cup (2, \infty)$
 - e) $(-2, -1) \cup (-1, 2)$

- b) $(-\infty, -2) \cup (2, \infty)$
- d) $(-1,2) \cup (2,\infty)$
- f) All real numbers.

Continue to Next Page

- 9. Which of the following is an asymptote of $\frac{2x^2 5x + 2}{x^2 9}$?
 - a) x = 2b) x = -2d) y = -2
 - e) y = 2x 5 f) x = 9
- 10. Solve the inequality $x^2 \le x + 20$.
 - a) (-5,4) b) (-4,5)
 - c) [-5, 4]
 - e) $(-\infty, -5) \cup (4, \infty)$ f) $(-\infty, -4) \cup (5, \infty)$

11. Solve the inequality $\frac{(x-1)(3-x)}{(x+3)^2} \leq 0.$

a) $(-3,1) \cup (1,3)$ b) $[-3,1) \cup (1,3]$ c) $(-\infty,-3) \cup [3,\infty)$ d) $(-\infty,-3) \cup (-3,1) \cup (3,\infty)$

d) [-4, 5]

f) $(-\infty, -3) \cup (-3, \infty)$

- e) $(-\infty, -3) \cup (-3, 1] \cup [3, \infty)$
- 12. Solve the inequality $\frac{x^2 4}{r} \le 3$.
 - a) [-1,4]b) (-1,4)c) $[-1,0) \cup (0,4]$ d) $(-\infty,-1] \cup (0,4]$ e) $(-\infty,-1) \cup [0,4)$ f) $[-1,0) \cup [4,\infty)$

13. What is the remainder when $x^{101} - 9x^{99} + x^2 - 7$ is divided by x - 3?

- a) 0b) 1c) -1d) 2e) -2f) 3
- 14. Use the rational zeros theorem (or rational roots test) to determine which of the following is not a potential zero of $3x^{35} 15x^{17} + 7x^{14} + 2x 15$.
 - a) 15 b) -5 c) 1
 - d) $\frac{5}{3}$ e) $-\frac{1}{3}$ f) $-\frac{1}{5}$

Continue to Next Page

15. Does $x^9 - x^8 - x^7 + 13x^2 - 1$ have any real zeros?

- a) Yes.
- b) No.
- c) Impossible to tell.
- 16. By using the Intermediate Value Theorem (IVT), does $x^5 + 3x^4 x^3 + x + 2$ have a zero between -1 and 1?
 - a) Yes.
 - b) No.
 - c) IVT is inconclusive.
- 17. Suppose we know that a polynomial f(x) with real coefficients has zeros 1, 2*i*, 3*i*, and 1-i. Then what do we know about the degree of f(x)?
 - a) The degree of f(x) is at most 7.
 - b) The degree of f(x) is exactly 7.
 - c) The degree of f(x) is at least 7.
 - d) None of the above.

18. Find the sum of the complex zeros of $x^3 - 27$.

- a) 0 b) $\frac{3}{2}$ c) $-\frac{3}{2}$
- d) 3 e) -3 f) $\frac{5}{2}$
- 19. Let $f(x) = x^3 + x^2 x + 15$. Given that 1 2i is a zero of f(x), find the remaining complex zeros.
 - a) $x = \{1+2i\}$ b) $x = \{1+2i, -3\}$ c) $x = \{1+2i, 3\}$

d)
$$x = \{1 + 2i, 1\}$$
 e) $x = \{1 + 2i, -1\}$ f) $x = \{1 + 2i, 5\}$

20. Form a polynomial of degree four whose coefficients are real numbers and has the zeros 1, 2, -4-i.

a)
$$x^4 + 5x^3 - 5x^2 - 35x + 34$$
 b) $2x^4 + 5x^3 - 10x^2 - 25x + 68$

c)
$$x^4 + 7x^3 - 14x^2 + 17x - 34$$

d) $3x^4 + 15x^3 - 2x^2 + 33x + 122$

e) $x^4 - 13x^3 + 26x^2 - 42x - 71$ f) $-x^4 + x^3 - 5x^2 - 4x + 1$

END OF EXAM

KEY:

- 1. D
- 2. D
- 3. B
- 4. A
- 5. C
- 6. F
- 7. B
- 8. C
- 9. C
- 10. D
- 11. E
- 12. D
- 13. D
- 14. F
- 15. A
- 16. C
- 17. C
- 18. A
- 19. B
- 20. A