March 5-11, 2015

Instructions:

- DO NOT WRITE on the exam.
- Choose the one choice that best completes the statement or answers the questions.
- Fill in the answer to each problem on your computer-scored answer sheet.
- There is no time limit.
- No books, notes, or calculators allowed.
- 1. Let $f(x) = \log_3(2x + 6)$. State the domain of f(x).

a.
$$(-\infty, -3)$$
 b. $(-3, \infty)$

b.
$$(-3, \infty)$$

c.
$$(0, \infty)$$

d.
$$(-\infty, 3)$$
 e. $(3, \infty)$ f. $(-\infty, \infty)$

e.
$$(3, \infty)$$

f.
$$(-\infty, \infty)$$

2. Solve for *x* in the following equation $7^{3x-6} = 7^{9-2x}$

a.
$$x = 3$$

b.
$$x = 0$$

c.
$$x = -3$$

$$1.x = 15$$

a. x = 3 b. x = 0 c. x = -3 d. x = 15 e. No solution

Given that f(x) and g(x) are one-to-one functions. Use the following table for problems 3-5.

х	-3	-2	-1	0	1	2	3
f(x)	-6	-5	-4	-3	-1	2	4
g(x)	3	2	1	0	-1	-3	-5

3. Evaluate g(f(0))

$$c = 0$$

e. Insufficient information.

4. Evaluate $g^{-1}(f(0))$

a.
$$-3$$
 b. $\frac{1}{3}$

b.
$$\frac{1}{3}$$

e. Insufficient information.

5. Which of the following relationships is accurate?

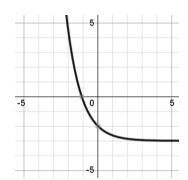
a.
$$f(2) < g(2) < g^{-1}(2)$$

a.
$$f(2) < g(2) < g^{-1}(2)$$
 b. $g(2) < f(2) < g^{-1}(2)$ c. $g^{-1}(2) < g(2) < f(2)$

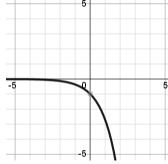
c.
$$g^{-1}(2) < g(2) < f(2)$$

d.
$$f(2) < g^{-1}(2) < g(2)$$
 e. $g(2) < g^{-1}(2) < f(2)$ f. $g^{-1}(2) < f(2) < g(2)$

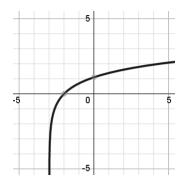
e.
$$g(2) < g^{-1}(2) < f(2)$$

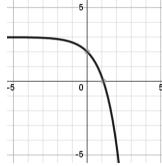

f.
$$g^{-1}(2) < f(2) < g(2)$$

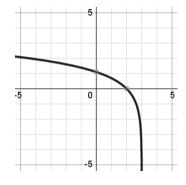
6. The graph of f(x) is given here:



Which of the following is a graph of $f^{-1}(x)$


a.


b.


c.

d.

e.

f. None of the above

7. Find the inverse of the following one-to-one function.

$$h(x) = \frac{3x - 4}{5 - x}$$

a.
$$h^{-1}(x) = \frac{5x+4}{x+3}$$

b.
$$h^{-1}(x) = \frac{3x+5}{x+4}$$

c.
$$h^{-1}(x) = \frac{x+5}{3x-5}$$

d.
$$h^{-1}(x) = \frac{3}{5}x + \frac{4}{x}$$

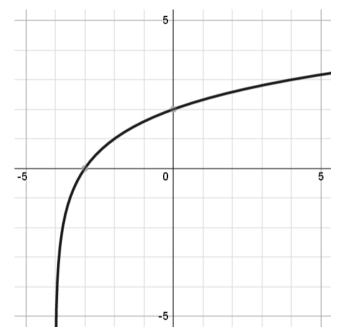
e.
$$h^{-1}(x) = \frac{11}{5-x} - 3$$

- f. None of the above.
- 8. For $f(x) = \frac{5}{x}$ and $g(x) = \sqrt{x+6}$, find the domain of the composite function $f \circ g$.

a.
$$(-\infty, -6) \cup (-6, \infty)$$
 b. $[-6, \infty)$

d.
$$(-\infty, 0) \cup (0, \infty)$$
 e. $(-\infty, -6)$ f. $(-\infty, 6) \cup (6, \infty)$

e.
$$(-\infty, -6)$$


f.
$$(-\infty, 6) \cup (6, \infty)$$

9. Simplify the expression

$$\log_3 7 \cdot \log_4 9 \cdot \log_7 2$$

e. 3

10. Select the function that best represents the given graph.

a.
$$f(x) = \log_2(x+4)$$

b.
$$f(x) = \log_2(x - 4)$$

$$c. \quad f(x) = \log_2(x+2)$$

$$d. \quad f(x) = \log_2(x-2)$$

e.
$$f(x) = 2\log_2(x - 2)$$

f.
$$f(x) = 2\log_2(x+2)$$

11. Write as a single logarithm

$$\log_4 15 + \log_4 21 - 2\log_4 3$$

b.
$$\log_4 33$$

- f. None of the above.
- 12. Write the expression as a sum or difference of logarithms

$$\ln \sqrt{\frac{(x+4)(x^2-7)}{3x-2}}$$

a.
$$\ln(x+4) + 2\ln(x-7) - 3\ln(x-2)$$

b.
$$\frac{1}{2}\ln(x+4) + \ln(x-7) - \frac{3}{2}\ln(x-2)$$

c.
$$ln(x + 4) + ln(x^2 - 7) - ln(3x - 2)$$

d.
$$\frac{1}{2}\ln(x+4) + \frac{1}{2}\ln(x^2-7) - \frac{1}{2}\ln(3x-2)$$

- e. None of the above.
- 13. Solve for x in the following equation $\log_5(10 x) = 2$

a.
$$x = -15$$

b.
$$x = 0$$

$$c. x = 10$$

$$d. x = 35$$

- a. x = -15 b. x = 0 c. x = 10 d. x = 35 e. No solution
- 14. Solve for x in the following equation $3^{2x} + 3^x = 12$

a.
$$x = 0$$

$$h x = 1$$

$$c. x = log_3 4$$

d.
$$x = 3$$

- b. x = 1 c. $x = log_3 4$ d. x = 3 e. No solution
- 15. Solve for x in the following equation ln(x-5) = ln(3x+11)

a.
$$x = -13$$

b.
$$x = -8$$

$$c. x = 0$$

d.
$$x = e^{-8}$$

a. x = -13 b. x = -8 c. x = 0 d. $x = e^{-8}$ e. No solution

16. The equation
$$5^{2x^2+x-5} = 5^{6x+7}$$
 has two solutions for x. Find the sum of the two solutions.

a.
$$x = \frac{5}{2}$$

b.
$$x = \frac{3}{2}$$

c.
$$x = 0$$

d.
$$x = -\frac{3}{2}$$

a.
$$x = \frac{5}{2}$$
 b. $x = \frac{3}{2}$ c. $x = 0$ d. $x = -\frac{3}{2}$ e. $x = -\frac{5}{2}$

17. Pam invests \$2,000 in an account that is compounded continuously at a rate of 3%. For t being the number of years from the initial investment, how long will it take for Pam to double her money?

a.
$$t = \frac{100}{3} \ln 2$$

b.
$$t = \frac{3}{100} \ln 2$$

$$c. t = \ln 60$$

a.
$$t = \frac{100}{3} \ln 2$$
 b. $t = \frac{3}{100} \ln 2$ c. $t = \ln 60$ d. $t = \frac{\ln 2}{\ln 3 - \ln 100}$ e. $t = \frac{\ln 2}{\ln 100 - \ln 3}$

e.
$$t = \frac{\ln 2}{\ln 100 - \ln 3}$$

18. A rare strain of bacteria grows according to the law of uninhibited growth. Initially, there are 70 bacteria. After 3 hours the bacteria output is 210. Give the equation that models the population P of the bacteria as a function of time t in hours.

a.
$$P(t) = 210e^{\frac{1}{3}t}$$

b.
$$P(t) = 70e^{\frac{\ln 3}{3}t}$$
 c. $P(t) = 70e^{\frac{1}{3}t}$

c.
$$P(t) = 70e^{\frac{1}{3}t}$$

d.
$$P(t) = 3e^{\frac{1}{70}t}$$

d.
$$P(t) = 3e^{\frac{1}{70}t}$$
 e. $P(t) = 70e^{\frac{3}{5}t}$

f. None of the above.

19. Find the focus of the parabola

$$-8(y-7) = 2x^2 + 8x + 8$$

a.
$$(-1,7)$$

b.
$$(1, -7)$$

c.
$$(7,-2)$$

e.
$$(-2,8)$$

f.
$$(-2,6)$$

20. Find the equation of a parabola for which the directrix is x = -1 and focus is (3, -3).

a.
$$(x-1)^2 = 4(y+3)$$

b.
$$(y-1)^2 = 16(x+3)$$

a.
$$(x-1)^2 = 4(y+3)$$
 b. $(y-1)^2 = 16(x+3)$ c. $(y+3)^2 = 8(x-1)$

d.
$$(x-1)^2 = -16(y+3)^2$$

d.
$$(x-1)^2 = -16(y+3)$$
 e. $(y+3)^2 = -8(x-1)$ f. $(y-3)^2 = 8(x+1)$

f.
$$(y-3)^2 = 8(x+1)^2$$

Key:

- 1 В
- 2 A
- 3 D
- 4 C
- 5 E
- 6 C
- 7 A
- 8 C
- 9 C
- 10 A
- 11 D
- 12 D
- 13 A
- 14 B
- 15 E
- 16 A
- 17 A
- 18 B
- 19 F
- 20 C