Math 110 (College Algebra)
 Midterm Exam 2

February 5-11, 2015

Instructions:

- DO NOT WRITE on the exam.
- Choose the one choice that best completes the statement or answers the question.
- Fill in the answer to each problem on your computer-scored answer sheet.
- There is no time limit.
- No books, notes, or calculators allowed.

1. Form a polynomial of degree 3 whose zeros are $1, i$, and $-i$.
(a) $x^{3}+x$
(b) $x^{3}-x$
(c) $x^{3}+x^{2}+x+1$
(d) $x^{3}-x^{2}+x-1$
(e) $x^{3}-x^{2}-x-1$
(f) $x^{3}-x+1$
2. Select the function that represents the given graph.

(a) $y=x^{2}(x-1)(x-2)$
(b) $y=x^{2}(x-1)^{2}(x-2)$
(c) $y=-x(x-1)^{3}(x-2)$
(d) $y=-x(x-1)(x-2)$
(e) $y=-x^{2}(x-1)(x-2)$
(f) $y=x^{2}(x+1)(x+2)$
3. Let $R(x)=\frac{x^{3}}{x^{2}-4}$. Find all vertical asymptotes, if any.
(a) No vertical asymptotes
(b) $x=0$
(c) $x=2$
(d) $x=-2$
(e) $x=0, x=2$
(f) $x=2, x=-2$
4. Find the domain of the following rational function: $f(x)=\frac{3 x^{2}-20 x-7}{7 x(x-3)}$.
(a) $\left\{x \mid x \neq 7, x \neq-\frac{1}{3}\right\}$
(b) $\left\{x \mid x \neq-7, x \neq \frac{1}{3}\right\}$
(c) $\{x \mid x \neq 3, x \neq 0\}$
(d) $\{x \mid x \neq-3, x \neq 0\}$
(e) $\{x \mid x \neq 0, x \neq-7\}$
(f) All real numbers
5. Let $R(x)=\frac{x^{3}+x^{2}-x+1}{x^{2}-1}$. Find the oblique asymptote if there is one.
(a) No oblique asymptote
(b) $y=0$
(c) $y=1$
(d) $y=x$
(e) $y=x+1$
(f) $y=x-1$
6. Let $R(x)=\frac{3 x^{3}}{2 x^{3}-1}$. Find the horizontal asymptote if there is one.
(a) No horizontal asymptote
(b) $y=\frac{2}{3}$
(c) $y=0$
(d) $y=3$
(e) $y=\frac{3}{2}$
(f) $y=2$
7. Solve the inequality: $\frac{(x+4)(3-x)}{(x-2)^{2}} \geq 0$.
(a) $[-4,2] \cup[2,3]$
(b) $[-4,2) \cup(2,3]$
(c) $(-\infty,-4) \cup(2,3]$
(d) $(-\infty, 4) \cup(-4,2) \cup(3, \infty)$
(e) $[-4,2] \cup(2, \infty)$
(f) $(-\infty, 2) \cup(2,3]$
8. Solve the following inequality: $(x+4)(x-6)(x-12) \geq 0$.
(a) $(-\infty, 4) \cup(6,12)$
(b) $(-\infty, 4] \cup[6,12]$
(c) $(-4,6) \cup(12, \infty)$
(d) $[-4,6] \cup[12, \infty)$
(e) $\quad(-4,6] \cup[12, \infty)$
(f) $[-4,6] \cup(12, \infty)$
9. Solve the inequality: $\frac{4 x+6}{x+3} \leq 3$.
(a) $(-3,3]$
(b) $[-3,3)$
(c) $(-\infty,-3) \cup[3, \infty)$
(d) $(-\infty,-3] \cup(3, \infty)$
(e) $[-3,3]$
(f) $(-\infty,-3]$
10. Solve the inequality: $x^{4}+2 x>x$.
(a) $(-\infty, 1) \cup(1, \infty)$
(b) $(-\infty,-1) \cup(0, \infty)$
(c) $(-\infty, 0) \cup(1, \infty)$
(d) $(-\infty, 0) \cup(0, \infty)$
(e) $(-1,1)$
(f) $(-\infty, 1)$
11. If $x^{100}+x^{3}+1$ is divided by $x+1$, then the remainder is
(a) -1
(b) 0
(c) 1
(d) 2
(e) 3
(f) $\quad-2$
12. Find a rational function that has the following graph:

(a) $\frac{-2(x+2)^{2}(x-5)}{(x+5)(x-2)^{2}}$
(b) $\frac{(x+2)^{2}(x-5)}{(x+5)(x-2)^{2}}$
(c) $\frac{2(x+2)^{2}(x-5)}{(x+5)(x-2)^{2}}$
(d) $\frac{2(x+2)(x-5)^{2}}{(x+5)(x-2)^{2}}$
(e) $\frac{2(x+2)(x-5)^{2}}{(x+5)^{2}(x-2)}$
(f) $\frac{2(x+2)^{2}(x-5)^{2}}{(x+5)(x-2)}$
13. List the potential rational zeros of the polynomial function. Do not find the zeros.

$$
f(x)=6 x^{4}+4 x^{3}-3 x^{2}+2
$$

(a) $\pm \frac{1}{2}, \pm \frac{3}{2}, \pm 1, \pm 2, \pm 3, \pm 6$
(b) $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm 1, \pm 2$
(c) $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm 1, \pm 2, \pm 3$
(d) $\pm \frac{1}{6}, \pm \frac{1}{3} \pm \frac{1}{2}, \pm \frac{2}{3}, \pm 1 \pm 2$
(e) $\pm \frac{1}{6}, \pm \frac{1}{4}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm \frac{3}{4}, \pm 1, \pm 2, \pm 3$
(f) $\pm \frac{1}{6}, \pm \frac{1}{4}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm 1, \pm 2, \pm 3, \pm 4, \pm 6$
14. The polynomial $x^{4}+6 x^{3}+9 x^{2}-4 x-12$ has four rational zeros. Find the zero that has multiplicity of two.
(a) 3
(b) 1
(c) 2
(d) -1
(e) $\quad-2$
(f) $\quad-3$
15. Find k so that $f(x)=x^{3}-k x^{2}+k x+3$ has the factor $x-3$.
(a) $k=2$
(b) $k=3$
(c) $k=4$
(d) $k=5$
(e) $\quad k=6$
(f) $\quad k=7$
16. Let $f(x)$ be a polynomial so that $f(1)=-1, f(2)=3, f(3)=-5$, and $f(4)=1$. Then the Intermediate Value Theorem promises that there must be how many zeros for $f(x)$, for x between 1 and 4?
(a) none
(b) one
(c) two
(d) three
(e) four
(f) five
17. Form a polynomial with real coefficients of degree two so that $2-3 i$ is zero.
(a) $x^{2}+4 x+13$
(b) $x^{2}-4 x+13$
(c) $x^{2}+4 x-13$
(d) $x^{2}-4 x-13$
(e) $x^{2}+2 x-13$
(f) $x^{2}+2 x+13$
18. The coefficients of the polynomial $f(x)$ are real numbers. Find the remaining zeros of f. Degree 5; zeros: 2, $i,-2 i$
(a) $-i, 2 i$
(b) $2+i, 2-2 i$
(c) $-2,-i, 2 i$
(d) $-2,-i$
(e) $-2,2 i$
(f) $-2 i, 2 i$
19. Find all solutions to $x^{3}+3 x^{2}+4 x+2=0$.
(a) $1,1+i, 1-i$
(b) $1,-1+i,-1-i$
(c) $1, i,-1$
(d) $-1,1+i, 1-i$
(e) $-1,-1+i,-1-i$
(f) $-1, i,-i$
20. Let $f(x)=x^{5}-x^{3}-12 x$. Find the zeros of $f(x)$ and choose the appropriate response.
(a) There is exactly one real zero of $f(x)$
(b) There are exactly two real zeros of $f(x)$
(c) There are exactly three real zeros of $f(x)$
(d) There are exactly four real zeros of $f(x)$
(e) There are exactly five real zeros of $f(x)$
(f) There are no real zeros

Answers

1. D
2. B
3. F
4. C
5. E
6. E
7. B
8. D
9. A
10. B
11. C
12. C
13. D
14. E
15. D
16. D
17. B
18. A
19. E
20. C
