## Math 110 (College Algebra) **RED-DO NOT WŘITÉ ON THIS EXAM**

## Midterm Exam 2 Fall 2015

October 1, 2014 through October 7, 2014

Instructions:

- Mark the correct answer on the bubble sheet provided.
- Calculators are not allowed.
- Please do not talk about the test with other students until after the last day to take the exam.

In questions 1-4 use the polynomial function

$$f(x) = -2(x+1)^2(x-4)^3(x+2).$$

- 1. What is the degree of f?
  - c) 16 a) 3 b) -2 e) 2 d) 6 f) 1

2. What is the *y*-intercept of f?

- a) y = 16c) y = -1b) y = -2d) y = 4e) y = 256f) None of these.
- 3. What is the end behavior of f?
  - a) Up to the right and up to the left.
  - b) Up to the right and down to the left.
  - c) Down to the right and up to the left.
  - d) Down to the right and down to the left.
  - There is a horizontal asymptote at y = -2. e)
  - f) None of the above.

4. On what set is value of f(x) > 0?

- a)  $(-\infty, -2] \cup [-1, 4]$ b)  $(-\infty, -2) \cup (-2, -1] \cup (4, \infty)$
- c)  $(-\infty, -2) \cup (4, \infty)$
- e)  $(-2, -1) \cup (-1, 4)$

- d)  $(-\infty, -2] \cup \{1\} \cup [4, \infty)$
- f) [-2,4]

5. Which polynomial could have the following graph?



In questions 6-9 use the rational function

$$R(x) = -\frac{(x-5)(2x+1)}{(x-2)^2(x+3)}.$$

6. What are the x-intercepts of R?

a) 
$$x = 2, -3, \frac{1}{2}, 5$$
  
b)  $x = 2, -3$   
c)  $x = -\frac{1}{2}, 5$   
d)  $x = -2, 3, -\frac{1}{2}, -5$   
f)  $x = \frac{1}{2}, -5$ 

7. What are the vertical asymptotes of R?

a) 
$$x = 2, -3, \frac{1}{2}, 5$$
  
b)  $x = 2, -3$   
c)  $x = -\frac{1}{2}, 5$   
d)  $x = -2, 3, -\frac{1}{2}, -5$   
f)  $x = \frac{1}{2}, -5$ 

- 8. What is the end behavior of R?
  - a) R has a horizontal asymptote at y = 2
  - b) R has a horizontal asymptote at y = -2
  - c) R has a horizontal asymptote at y = 0
  - d) R has a oblique (slant) asymptote at  $y = \frac{1}{2}x + \frac{7}{4}$ .
  - e) R goes down to the right and down to the left.
  - f) R goes up to the right and up to the left.

9. Recall,

$$R(x) = -\frac{(x-5)(2x+1)}{(x-2)^2(x+3)}.$$

On what set is  $R(x) \leq 0$ ?

a) 
$$(-\infty, -3] \cup [0, 2)$$
  
b)  $(-\infty, -3) \cup (-\frac{1}{2}, 5)$   
c)  $(-2, -\frac{1}{2}) \cup \{2\} \cup (5, \infty)$   
d)  $(-3, -\frac{1}{2}] \cup [5, \infty)$   
e)  $(-\infty, -5) \cup (\frac{1}{2}, 3)$   
f)  $(-\infty, -3) \cup (-\frac{1}{2}, 2) \cup (2, 5)$ 

10. What is the domain of the following rational function?

$$R(x) = \frac{x^2 - 7x + 12}{2x^2 - 6x - 8}$$

- a)  $\{x | x \neq -8, 12\}$ c)  $\{x | x \neq 4, 3, -1\}$ e)  $\{x | x \neq -1, 4\}$ b)  $\{x | x \neq -1, 3\}$ d)  $\{x | x \neq -1\}$ f)  $\{x | x \neq 3, 4\}$
- 11. Which rational function could have the following graph?



12. Which of the following is the graph of the function

$$f(x) = x^4 + 3x^3 - 7x^2 - 15x + 18?$$



13. What are all the roots of the polynomial  $2x^3 - 4x^2 + 18x - 36$ ?

| a) | 1, 3, -3    | b) | 2, 3i, -3i                       |
|----|-------------|----|----------------------------------|
| c) | -2, 3i, -3i | d) | $1, \frac{3}{2}i, -\frac{3}{2}i$ |
| e) | 2, 3, -3    | f) | 2 $2$ $2$                        |

## 14. What is the set of all x for which

$$2x^2 - 13x + 10 \ge -x^3$$

is true?

$$\begin{array}{lll} \text{a)} & (-\infty,-4)\cup(1,3) & \text{b)} & [-4,1]\cup[3,\infty) \\ \text{c)} & (-4,1)\cup(3,\infty) & \text{d)} & (-\infty,-5)\cup(1,2) \\ \text{e)} & [-5,1]\cup[2,\infty) & \text{f)} & (-\infty,-5]\cup[1,2] \\ \end{array}$$

15. Let  $f(x) = x^5 + x^4 + 4x^3 - 4x^2 + 3x - 5$ . If we know that *i* is a root, what all the roots of *f*?

- a) -1, i, -i, -1 + 2i, -1 2ic) -5, -1, i, 1 + 2i, 1 - 2ie) -1, i, -i, 1 + i, 1 - ib) 1, i, -i, -1 + 2i, -1 - 2id) 5, i, -i, 1 + i, 1 - if) -1, i, -i, -1 + i, -1 - i
- 16. What is the set of all x for which

$$\frac{1}{x-2} \le \frac{1}{x^2 + x - 6}$$

is true?

a) 
$$(-\infty, -2)$$
  
c)  $(-3, -2] \cup (2, \infty)$   
e)  $(-\infty, -3] \cup [-2, 2)$   
b)  $(-\infty, -3)$   
d)  $(-3, \infty)$   
f)  $(-\infty, -2) \cup [2, 3)$ 

17. If  $f(x) = x^{100} - 2x^{99} - 4x + 8$  Which of the following are factors of f?

a) 
$$(x-2)$$
  
c)  $(x-1)$   
b)  $(x+2)$   
d)  $(x-3)$ 

- e) a and b f) b and c
- 18. Using the Remainder Theorem, what would be the remainder of  $x^6 3x^4 + 2x^3 + x^2 + x + 6$  divided by x + 1?
  - a) 8 b) 2 c) -2
  - d) 6 e) -3 f) 7

19. According the the Rational Roots Theorem (sometimes called the Rational Roots Test) what are all the possible rational roots of the following polynomial?

 $3x^{6} + 67x^{4} + 1007x^{3} + x^{2} - 456x + 15$ 

- a)  $\pm 15, \pm 10, \pm 5, \pm 3, \pm 1, \pm \frac{10}{3}, \pm \frac{5}{3}, \pm \frac{1}{3}$ b)  $\pm 15, \pm 5, \pm 3, \pm 1, \pm \frac{5}{3}, \pm \frac{1}{3}$
- c)  $\pm 45, \pm 30, \pm 15, \pm 5, \pm 3, \pm 1$
- d)  $\pm 3, \pm 1, \pm \frac{1}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}$ e)  $\pm 5, \pm 3, \pm 1, \pm \frac{10}{3}, \pm \frac{5}{3}, \pm \frac{1}{3}$
- None of the above. f)
- 20. Consider the polynomial  $f(x) = 3(x-2)(3x-1)^2(x+4)^5(x+1)^3$  which of the following statements is true about f?
  - It has degree 4, the graph of f crosses the x-axis at x = -4 but not at x = -1. a)
  - It has degree 11, the graph of f crosses the x-axis at x = -2 but not at  $x = \frac{1}{3}$ . b)
  - It has degree 5, the graph of f crosses the x-axis at x = 2 and at x = -1. c)
  - It has degree 11, the graph of f touches but does not cross the x-axis at  $x = \frac{1}{3}$  and at d) x = -1, but crosses at x = -4.
  - It has degree 11, the graph of f crosses the x-axis at x = 2, at x = -1, and at x = -4. e)
  - It has degree 5, the graph of f crosses the x-axis at x = 2, at x = -1, and at  $x = \frac{1}{3}$ . f)

1. d 2. e 3. d 4. e 5. a 6. c 7. b 8. c 9. d 10. e 11. a 12. d 13. b 14. e 15. b 16. e 17. a 18. b 19. b 20. e