Name \qquad
Student Number \qquad
Section Number \qquad
Instructor \qquad

Math 112 - Winter 2007
 Departmental Final Exam

Instructions:

- The time limit is 3 hours.
- Problem 1 consists of fill in the blank questions, each worth 1 point.
- Problems 2 through 8 are multiple choice questions, each worth 4 points.

Their answers MUST be entered on the grid on page 2

- Work on scratch paper will not be graded. Do not show your work for problem 1 through 8 .
- Write solutions to problems 9 through 18 on the exam paper in the space provided.

Problems 9-17 are worth 6 points each.
Problem 18 is worth 9 points (3 points per part).
You must show your work to receive full credit.

- Please write neatly, and simplify your answers.
- Notes, books, and calculators are not allowed.
- Expressions such as $\ln (1), e^{0}, \sin (\pi / 2)$, etc. must be simplified for full credit.

For administrative use only:

1	$/ 9$
M.C.	$/ 28$
9	$/ 6$
10	$/ 6$
11	$/ 6$
12	$/ 6$

13	$/ 6$
14	$/ 6$
15	$/ 6$
16	$/ 6$
17	$/ 6$
18	$/ 9$
Total	$/ 100$

Math 112 - Winter 2007

Departmental Final Exam
Part I: Fill in the blank or circle T/F

1. (a) The limit $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x}{1-x^{2}}=$
(b) If $f(x)=x^{2}$, and $x_{0}=1$, then Newton's method for solving $f(x)=0$ gives us $x_{1}=$ \qquad
(c) $\left(\underline{\mathrm{T} / \mathrm{F})}\right.$ If $f^{\prime \prime}(x)$ exists on $[a, b]$, then $f(x)$ is continuous on $[a, b]$
(d) The mean value theorem states that if f is differentiable on $[a, b]$, then there is a c in (a, b) with
$f^{\prime}(c)=$ \qquad
(e) The limit $\lim _{x \rightarrow 3+} \frac{|x-3|}{x-3}=$
(f) The average value of a function f over an interval $[a, b]$ is given by
(g) If $\int_{2}^{4} f(x) d x=2, \int_{0}^{4} f(x) d x=6, \int_{0}^{2} g(x) d x=5$, then

$$
\int_{0}^{2} f(x)+3 g(x) d x=
$$

\qquad
(h) (T/F) If $f^{\prime}(x)$ exists on $[a, b]$, then $f(x)$ is integrable on $[a, b]$
(i) The integral $\int \frac{d x}{1+x^{2}}=$

Part II: Multiple Choice

Problems 2 through 8 are multiple choice. Each multiple choice problem is worth 4 points. In the grid below fill in the square corresponding to each correct answer.

2	A	B	C	D	E	F	G	H	I	J
3	A	B	C	D	E	F	G	H	I	J
4	A	B	C	D	E	F	G	H	I	J
5	A	B	C	D	E	F	G	H	I	J
6	A	B	C	D	E	F	G	H	I	J
7	A	B	C	D	E	F	G	H	I	J
8	A	B	C	D	E	F	G	H	I	J

2. $\lim _{x \rightarrow 0} \frac{2 x}{\sin 5 x}=$
A. 0
B. $\frac{2}{5}$
C. 1
D. $\frac{5}{2}$
E. 2
F. $-\infty$
G. ∞
H. Limit does not exist.
3. Given the limit statement $\lim _{x \rightarrow 5}(-3 x+17)=2$, pick the largest δ that works with the definition of the limit if $\epsilon=0.06$.
A. 0.001
B. 0.005
C. 0.01
D. 0.02
E. 0.03
F. 0.06
G. 0
H. No such δ.
4. If $f(x)=6 x^{2}, g(-1)=-2, g^{\prime}(-1)=3$, find $\frac{d}{d x}(f(g(x)))$ at $x=-1$.
A. 0
B. 1
C. -12
D. -24
E. -36
F. -48
G. -72
H. None of the above.
5. Which of the following is the maximum value of $f(x)=2 x^{3}-3 x^{2}-36 x+4$ over $[-3,2]$?
A. 4
B. -2
C. 3
D. 80
E. 48
F. 64
G. -16
H. None of the above.
6. Given $x^{2} \ln y+y \ln \left(x^{2}\right)=2 e$, find $\frac{d y}{d x}$ at the point (\sqrt{e}, e).
A. -1
B. e
C. $-2 e$
D. $\frac{\sqrt{e}}{2 \sqrt{e}-2}$
E. $-2 \sqrt{e}$
F. $-\sqrt{2 e}$
G. 1
H. $\frac{2 \sqrt{e}+2}{\sqrt{e}-2}$
7. Which of the following is a Riemann sum for $\int_{0}^{1} \sinh ^{-1} x d x$ as $n \rightarrow \infty$?
A. $\sum_{j=0}^{n-1} \sinh ^{-1}\left(\frac{1}{n}\right) \cdot \frac{j}{n}$
B. $\sum_{j=0}^{n-1} \sinh ^{-1}\left(\frac{j+1}{n}\right) \cdot \frac{1}{n}$
C. $\sum_{j=0}^{n-1} \sinh ^{-1}\left(\frac{j}{n}\right) \cdot \frac{j}{n}$
D. $\sum_{j=0}^{n-1} \sinh ^{-1}\left(\frac{2 j+1}{2 n}\right) \cdot \frac{1}{n}$
E. (A) and (C)
F. (B) and (D)
G. All of the above
H. None of the above
8. Evaluate $\int_{0}^{1 / 2} 8(1-4 x)^{3} d x$
A. -1
B. 1
C. 4
D. -4
E. 0
F. 3
G. -5
H. None of the above.

The answers to the multiple choice MUST be entered on the grid on page 2. Otherwise, you will not receive credit.

Part III: Written Solutions

For problems 9-18, write your answers in the space provided. Neatly show your work for full credit.
9. (a) State the conditions for $f(x)$ defined over $[0,2]$ to be continuous at $x=1$.
(b) At which points does the function

$$
f(x)=\frac{\sqrt{x+4}}{(x+2)(x-3)}
$$

fail to be continuous? At which points, if any are the discontinuities removable? not removable? Give reasons for your answers.
10. Differentiate the following:
(a) $f(x)=x^{\pi}+\sec (\tan x)$
(b) $g(x)=\left(\frac{x^{2}+1}{x^{2}-1}\right)^{1 / 2}$
11. Find the equation for the tangent line to $f(x)=e^{x} \cos (x)$ at the point $\left(\pi,-e^{\pi}\right)$.
12. If $f(x)=\frac{1}{x-1}$, find $f^{\prime}(2)$ using the definition of the derivative. (No point will be awarded if differentiation rules are used.)
13. What are the dimensions of the rectangle of largest area that fits in a right triangle with side lengths 3 in, 4 in and 5 in?
14. The area of a square is increasing at $4 \mathrm{in}^{2} / \mathrm{s}$. How fast is the length of the diagonal increasing at the moment that the side of the square is 6 in ?
15. Given that for all $x>-4$, the function $f(x)$ is defined, continuous and satisfies the bounds

$$
\frac{2}{1+e^{-1 / x^{2}}} \leq f(x) \leq 2+\frac{x}{4-\sqrt{x+4}}
$$

Determine the value $f(0)$. State any theorem you used to find your answer.
16. Let $A(x)=\int_{x+1}^{\sqrt{x}} \sin t^{2} d t$. Find $\frac{d A}{d x}$. State any theorem you used to find your answer.
17. If

$$
f(x)=\frac{x}{x^{2}+1}
$$

find all intervals of monotonicity, all intervals of concavity, all inflection points, all relative extrema and all global extrema if possible.
18. Find the following integrals
(a) $\int_{e^{2}}^{e^{3}} 2 x^{-1} d x$
(b) $\int \frac{\cos ^{4}(\sqrt{x}) \sin (\sqrt{x})}{\sqrt{x}} d x$
(c) $\int_{0}^{1} 30 x \sqrt{1-x} d x$

