Name: \qquad
Student ID: \qquad
Section: \qquad
Instructor: \qquad

Math 112 (Calculus I)
 Final Exam Form A
 April 18, 7:00 p.m.

Instructions:

- Work on scratch paper will not be graded.
- For questions 10 to 17 , show all your work in the space provided.. Full credit will be given only if the necessary work is shown justifying your answer. Please write neatly.
- Should you have need for more space than is alloted to answer a question, use the back of the page the problem is on and indicate this fact.
- Simplify your answers. Expressions such as $\ln (1), e^{0}, \sin (\pi / 2)$, etc. must be simplified for full credit.
- Calculators are not allowed.

For Instructor use only.

$\#$	Possible	Earned
MC	24	
9	11	
10	7	
11	7	
12	7	
13	7	
14 a	3	
Sub	66	

$\#$	Possible	Earned
14 b	3	
14 c	3	
15 a	7	
15 b	7	
16	7	
17	7	
Sub	34	
Total	100	

Multiple Choice. Fill in the answer to each problem on your scantron. Make sure your name, section and instructor is on your scantron.

1. $\frac{d}{d x} \int_{3}^{4 x} \frac{t^{3}}{\sqrt{1+t^{5}}} d t=$
a) $\frac{256 x^{3}}{\sqrt{1+1024 x^{5}}}$
b) $\frac{256 x^{3}}{\sqrt{1+1024 x^{5}}}-\frac{27}{\sqrt{244}}$
c) $\frac{64 x^{3}}{\sqrt{1+1024 x^{5}}}$
d) $\frac{4 x^{3}}{\sqrt{1+x^{5}}}$
e) $\frac{4 x^{3}}{\sqrt{1+x^{5}}}-\frac{27}{\sqrt{244}}$
f) $\frac{x^{3}}{\sqrt{1+x^{5}}}$
2. $\int_{\sqrt{5}}^{2 \sqrt{3}} \frac{z}{\left(4+z^{2}\right)^{3 / 2}} d z=$
a) $-\frac{1}{7}$
b) $-\frac{1}{12}$
c) Does not exist.
d) $\frac{1}{12}$
e) $\frac{1}{7}$
f) $\frac{1}{4}$
g) None of the above.
3. Find the area of the largest rectangle that can be inscribed in a right triangle with legs of lengths 3 cm and 4 cm if two sides of the rectangle lie along the legs. (All answers are in square cm .)
a) 1
b) $\frac{1}{3}$
c) 2
d) 3
e) $\frac{9}{2}$
f) There is no largest rectangle.
g) None of the above.
4. $\lim _{x \rightarrow 4} \frac{4-x}{|4-x|}=$
a) 0
b) 1
c) -1
d) ∞
e) $-\infty$
f) Does not exist.
g) None of the above.
5. We say $\lim _{x \rightarrow a} f(x)=L$ if
a) For every $\epsilon>0$ there exists a $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
b) There exists $\epsilon>0$ such that for every $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
c) For some $\epsilon>0$ there exists a $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
d) For every $\epsilon>0$ and for every $\delta>0$, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
e) For every $\delta>0$ there exists a $\epsilon>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
f) For some $\epsilon>0$ and every $\delta>0$, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
g) None of the above.
6. If $f^{\prime}(x)=e^{x^{2}}$ and $g(x)=f(\sqrt{x})$, then $g^{\prime}(x)=$
a) $\frac{e^{x^{2}}}{2 x}$
b) $\frac{e^{x^{2}}}{2 \sqrt{x}}$
c) $\frac{e^{x}}{2 \sqrt{x}}$
d) $\left(\frac{2 x-1}{4 x \sqrt{x}}\right) e^{x}$
e) $2 x e^{\sqrt{x}}$
f) $2 \sqrt{x} e^{x}$
g) None of the above.
7. $\frac{d}{d x}\left(x^{\sin x}\right)=$
a) $\sin (x) x^{\sin x-1}$
b) $\cos (x) x^{\sin x-1}$
c) $x^{\sin x} \cos x \ln x$
d) $\frac{\sin x}{x} x^{\sin x} \cos x$
e) $x^{\sin x}\left(\frac{\sin x}{x}+\cos (x) \ln x\right)$
f) $x^{\sin x} \sin x \cos x$
g) None of the above.
8. If $\$ 5000$ is borrowed at 5% interest compounded continuously, then the amount due at the end of ten years is
a) $\$ 5000(1.05)^{10}$
b) $\$ 5000 \sqrt{e}$
c) $\$ 7500$
d) $\$ 5000 e$
e) $\$ 5000 e^{1.5}$
f) $\$ 5000 e^{1.05}$
g) None of the above.

Short Answer Fill in the blank with the appropriate answer.
9. (11 points)
a) $\lim _{x \rightarrow \pi^{-}} \ln (\sin x)=$ \qquad
b) What kind of discontinuity exists at $x=-1$ for the function $f(x)=\frac{x+1}{x^{2}-1}$?
c) $\frac{d}{d x}\left(a^{3}+\cos ^{3} x\right)=$ \qquad
d) $\frac{d^{2}}{d x^{2}}\left(e^{x^{2}}\right)=$ \qquad
e) If $f^{\prime}(x) \geq 2$ for all $x \in[0,2]$, what theorem tells us that $f(2)-f(0) \geq 4$? \qquad
f) $\frac{d}{d x}\left(\tan ^{-1}\left(x^{2}\right)\right)=$ \qquad
g) $\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}=$ \qquad
h) $\int\left(\sqrt{x}+\frac{1}{x}\right) d x=$ \qquad
i) $\int_{3}^{4}(1+3 x) d x=$ \qquad
j) $\int_{2}^{5}(2 x-1)^{2} d x=$ \qquad
k) Set up a limit to find the derivative of $g(x)=\frac{1}{x^{2}+1}$.

Free Response. For problems 10-17, write your answers in the space provided. Use the back of the page if needed, indicating that fact. Neatly show all work.
10. (7 points) Prove $\lim _{x \rightarrow 2} 4 x-3=5$ using the $\epsilon-\delta$ definition of the limit.
11. (7 points) Estimate $\sqrt[3]{8.012}$ by linear approximation.
12. (7 points) Find an equation to the tangent line to $4 x^{3}+2 x y+y^{3}=1$ at $(1,-1)$.
13. (7 points) If a ball is thrown vertically upwards from the top edge of a 90 foot building with an initial velocity of 80 feet per second, it's height above the ground (after t seconds) is given by

$$
h(t)=90+80 t-16 t^{2} .
$$

What is its maximum height above the ground?
14. Let $f(x)=2 x^{3}+3 x^{2}-12 x$.
(a) (3 points) Find the interval(s) on which $f(x)$ is increasing or decreasing. Label them appropriately.
(b) (3 points) Find the local maxima and minima of $f(x)$
(c) (3 points) Find the intervals of concavity and the inflection points of $f(x)$.
15. Evaluate the following limits:
(a) (7 points) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)$
(b) (7 points) $\lim _{x \rightarrow \infty} x^{1 / x}$.
16. (7 points) Find $\int \frac{1+x}{x+x^{2}} d x$.
17. (7 points) A dog owner has 1000 feet of fencing and wishes to make 4 dog runs side by side. (a dog run is a fenced rectangular area the dog can pace in). What dimensions will give the largest area? (Note: two dog runs that sit side by side share a common side.)

