Part I: Fill in the blank or circle T/F

1. (a) The limit $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x}{1-x^{2}}=--2$
(b) If $f(x)=x^{2}$, and $x_{0}=1$, then Newton's method for solving $f(x)=0$ gives us $x_{1}=$ $\frac{1}{2}$
(c) ($\mathrm{T} / \mathrm{F})$ If $f^{\prime \prime}(x)$ exists on $[a, b]$, then $f(x)$ is continuous on $[a, b]$
(d) The mean value theorem states that if f is differentiable on $[a, b]$, then there is a c in (a, b) with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(e) The limit $\lim _{x \rightarrow 3+} \frac{|x-3|}{x-3}=1$
(f) The average value of a function f over an interval $[a, b]$ is given by $\frac{1}{b-a} \int_{a}^{b} f(x) d x$
(g) If $\int_{2}^{4} f(x) d x=2, \int_{0}^{4} f(x) d x=6, \int_{0}^{2} g(x) d x=5$, then

$$
\int_{0}^{2} f(x)+3 g(x) d x=19
$$

(h) ($\underline{\boxed{T} / \mathrm{F})}$ If $f^{\prime}(x)$ exists on $[a, b]$, then $f(x)$ is integrable on $[a, b]$.
(i) The integral $\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C$

Part II: Multiple Choice

Problems 2 through 8 are multiple choice. Each multiple choice problem is worth 4 points. In the grid below fill in the square corresponding to each correct answer.

2	A		C	D	E	F	G	H	I	J
3	A	B	C		E	F	G	H	I	J
4	A	B	C	D	E	F		H	I	J
5	A	B	C	D		F	G	H	I	J
6	A	B	C	D		F	G	H	I	J
7	A	B	C	D	E		G	H	I	J
8	A	B	C	D		F	G	H	I	J

2. $\lim _{x \rightarrow 0} \frac{2 x}{\sin 5 x}=$
A. 0
B. $\frac{2}{5}$
C. 1
D. $\frac{5}{2}$
E. 2
F. $-\infty$
G. ∞
H. Limit does not exist.
3. Given the limit statement $\lim _{x \rightarrow 5}(-3 x+17)=2$, pick the largest δ that works with the definition of the limit if $\epsilon=0.06$.
A. 0.001
B. 0.005
C. 0.01
D. 0.02
E. 0.03
F. 0.06
G. 0
H. No such δ.
4. If $f(x)=6 x^{2}, g(-1)=-2, g^{\prime}(-1)=3$, find $\frac{d}{d x}(f(g(x)))$ at $x=-1$.
A. 0
B. 1
C. -12
D. -24
E. -36
F. -48
G. -72
H. None of the above.
5. Which of the following is the maximum value of $f(x)=2 x^{3}-3 x^{2}-36 x+4$ over $[-3,2]$?
A. 4
B. -2
C. 3
D. 80
E. 48
F. 64
G. -16
H. None of the above.
6. Given $x^{2} \ln y+y \ln \left(x^{2}\right)=2 e$, find $\frac{d y}{d x}$ at the point (\sqrt{e}, e).
A. -1
B. e
C. $-2 e$
D. $\frac{\sqrt{e}}{2 \sqrt{e}-2}$
E. $-2 \sqrt{e}$
F. $-\sqrt{2 e}$
G. 1
H. $\frac{2 \sqrt{e}+2}{\sqrt{e}-2}$
7. Which of the following is a Riemann sum for $\int_{0}^{1} \sinh ^{-1} x d x$ as $n \rightarrow \infty$?
A. $\sum_{j=0}^{n-1} \sinh ^{-1}\left(\frac{1}{n}\right) \cdot \frac{j}{n}$
B. $\sum_{j=0}^{n-1} \sinh ^{-1}\left(\frac{j+1}{n}\right) \cdot \frac{1}{n}$
C. $\sum_{j=0}^{n-1} \sinh ^{-1}\left(\frac{j}{n}\right) \cdot \frac{j}{n}$
D. $\sum_{j=0}^{n-1} \sinh ^{-1}\left(\frac{2 j+1}{2 n}\right) \cdot \frac{1}{n}$
E. (A) and (C)
F. (B) and (D)
G. All of the above
H. None of the above
8. Evaluate $\int_{0}^{1 / 2} 8(1-4 x)^{3} d x$
A. -1
B. 1
C. 4
D. -4
E. 0
F. 3
G. -5
H. None of the above.

The answers to the multiple choice MUST be entered on the grid on page 2. Otherwise, you will not receive credit.

Part III: Written Solutions

For problems 9-18, write your answers in the space provided. Neatly show your work for full credit.
9. (a) State the conditions for $f(x)$ defined over $[0,2]$ to be continuous at $x=1$.
i. $f(x)$ is defined at $x=1$
ii. $\lim _{x \rightarrow 1} f(x)$ exists and is equal to $f(1)$.
(b) At which points does the function

$$
f(x)=\frac{\sqrt{x+4}}{(x+2)(x-3)}
$$

fail to be continuous? At which points, if any, are the discontinuities removable? not removable? Give reasons for your answers.

The function f is not defined for all $x<-4$ and at $x=-2,3$ and thus discontinuous at these points.
All the discontinuous points are not removable because at these points the limit of f does not exist.
10. Differentiate the following:
(a) $f(x)=x^{\pi}+\sec (\tan x)$ Applying power rule and chain rule, and recalling that

$$
\begin{gathered}
(\sec x)^{\prime}=\sec x \tan x, \quad(\tan x)^{\prime}=\sec ^{2} x \\
f^{\prime}(x)=\pi x^{\pi-1}+\sec (\tan x) \tan (\tan x) \sec ^{2} x
\end{gathered}
$$

(b) $g(x)=\left(\frac{x^{2}+1}{x^{2}-1}\right)^{1 / 2}$

Applying chain rule and quotient rule

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{2}\left(\frac{x^{2}+1}{x^{2}-1}\right)^{-1 / 2}\left(\frac{x^{2}+1}{x^{2}-1}\right)^{\prime}=\frac{1}{2}\left(\frac{x^{2}+1}{x^{2}-1}\right)^{-1 / 2} \frac{-4 x}{\left(x^{2}-1\right)^{2}} \\
& =\left(\frac{x^{2}+1}{x^{2}-1}\right)^{-1 / 2} \cdot \frac{-2 x}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

11. Find the equation for the tangent line to $f(x)=e^{x} \cos (x)$ at the point $\left(\pi,-e^{\pi}\right)$.

$$
f^{\prime}(x)=e^{x} \cos (x)-e^{x} \sin (x) \quad \Rightarrow \quad f^{\prime}(\pi)=-e^{\pi}
$$

so the equation for the tangent line at the point $\left(\pi,-e^{\pi}\right)$ is given by

$$
y+e^{\pi}=-e^{\pi}(x-\pi)
$$

or

$$
y=-e^{\pi} x+(\pi-1) e^{\pi}
$$

12. If $f(x)=\frac{1}{x-1}$, find $f^{\prime}(2)$ using the definition of the derivative. (No point will be awarded if differentiation rules are used.)

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{2+h-1}-\frac{1}{2-1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{1+h}-1\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1-(1+h)}{1+h}\right)=\lim _{h \rightarrow 0} \frac{-1}{1+h} \\
& =-1
\end{aligned}
$$

Alternatively,

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{1}{x-1}-\frac{1}{2-1}}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{1}{x-2}\left(\frac{1}{x-1}-1\right)=\lim _{x \rightarrow 2} \frac{1}{x-2}\left(\frac{1-(x-1)}{x-1}\right)=\lim _{x \rightarrow 2} \frac{-1}{x-1} \\
& =-1
\end{aligned}
$$

13. What are the dimensions of the rectangle of largest area that fits in a right triangle with side lengths 3 in, 4 in and 5 in?

Suppose the vertices of the triangle are located at the origin, $(0,4)$ and $(3,0)$. Let x and y be the width and the height of a rectangle with sides parallel to the axes and a corner lying on the hypothenuse. Then

$$
\frac{x}{3}+\frac{y}{4}=1 \quad \Rightarrow \quad y=4\left(1-\frac{x}{3}\right)
$$

thus the area of the rectangle is

$$
\begin{gathered}
A=x y=4 x\left(1-\frac{x}{3}\right) \\
A^{\prime}(x)=4-\frac{8 x}{3}
\end{gathered}
$$

Setting the derivative to 0 and solving, we have

$$
x=\frac{3}{2}, \quad y=2
$$

Note the area is largest from the second derivative test with $A^{\prime \prime}=-\frac{8}{3}<0$
14. The area of a square is increasing at $4 \mathrm{in}^{2} / \mathrm{s}$. How fast is the length of the diagonal increasing at the moment that the side of the square is 6 in ?

Let x the side of the square. Then the rate of increase of the area $A=x^{2}$ is given by $\frac{d A}{d t}=4$ $i n^{2} / \mathrm{s}$. Now

$$
\frac{d A}{d t}=2 x \frac{d x}{d t} \quad \Rightarrow \quad \frac{d x}{d t}=\frac{2}{x}
$$

The length of the diagonal is $\ell(x)=\sqrt{2} x$, so the rate of increase of the diagonal is

$$
\frac{d \ell}{d t}=\sqrt{2} \frac{d x}{d t}=\frac{2 \sqrt{2}}{x}
$$

Hence when the side of the square is 6 in, the diagonal is increasing at a rate of

$$
\frac{d \ell}{d t}=\frac{\sqrt{2}}{3} \quad(\mathrm{in} / \mathrm{s})
$$

15. Given that for all $x>-4$, the function $f(x)$ is defined, continuous and satisfies the bounds

$$
\frac{2}{1+e^{-1 / x^{2}}} \leq f(x) \leq 2+\frac{x}{4-\sqrt{x+4}}
$$

Determine the value $f(0)$. State any theorem you used to find your answer.

As

$$
\lim _{x \rightarrow 0} \frac{2}{1+e^{-1 / x^{2}}}=\frac{2}{1+0}=2
$$

and

$$
\lim _{x \rightarrow 0} 2+\frac{x}{4-\sqrt{x+4}}=\lim _{x \rightarrow 0} 2+\frac{x(4+\sqrt{x+4})}{16-(x+4)}=2
$$

so by the squeeze play or comparison limit theorem,

$$
\lim _{x \rightarrow 0} f(x)=2
$$

Since $f(x)$ is continuous, so $f(0)=2$.
16. Let $A(x)=\int_{x+1}^{\sqrt{x}} \sin t^{2} d t$. Find $\frac{d A}{d x}$. State any theorem you used to find your answer.

By the fundamental theorem of calculus and the chain rule,

$$
\frac{d A}{d x}=\frac{d}{d x} \int_{x+1}^{\sqrt{x}} \sin t^{2} d t=\sin \left((\sqrt{x})^{2}\right) \frac{d}{d x}(\sqrt{x})-\sin \left((x+1)^{2}\right) \frac{d}{d x}(x+1)
$$

and so

$$
\frac{d A}{d x}=\frac{\sin x}{2 \sqrt{x}}-\sin \left((x+1)^{2}\right)
$$

17. If

$$
f(x)=\frac{x}{x^{2}+1}
$$

find all intervals of monotonicity, all intervals of concavity, all inflection points, all relative extrema and all global extrema if possible.

$$
f^{\prime}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}, \quad f^{\prime \prime}=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}
$$

so inflection points are $x=0, \pm \sqrt{3}$ and extrema are $x= \pm 1$.

x	$f^{\prime \prime}(x)$	$f^{\prime}(x)$	$f(x)$
-1	$\frac{1}{2}$	0	relative min
1	$-\frac{1}{2}$	0	relative max
<-1		-	decreasing
$(-1,1)$		+	increasing
>1		-	decreasing
$<-\sqrt{3}$	-		conave down
$(-\sqrt{3}, 0)$	+		conave up
$(0, \sqrt{3})$	-		conave down
$>\sqrt{3}$	+		conave up

The only relative maximum is also the global maximum. The only relative minimum is also the global minimum.
18. Find the following integrals
(a) $\int_{e^{2}}^{e^{3}} 2 x^{-1} d x$

$$
\begin{aligned}
\int_{e^{2}}^{e^{3}} 2 x^{-1} d x & =\left.2 \ln x\right|_{e^{2}} ^{e^{3}}=2 \ln e^{3}-2 \ln e^{2} \\
& =6-4=2
\end{aligned}
$$

(b) $\int \frac{\cos ^{4}(\sqrt{x}) \sin (\sqrt{x})}{\sqrt{x}} d x$

Using substitution $u=\cos (\sqrt{x})$,

$$
\begin{aligned}
& d u=-\sin (\sqrt{x}) \frac{1}{2 \sqrt{x}} d x \\
& \int \frac{\cos ^{4}(\sqrt{x}) \sin (\sqrt{x})}{\sqrt{x}} d x=\int u^{4}(-2) d u=-\frac{2}{5} u^{5}+C \\
&=-\frac{2}{5} \cos ^{4}(\sqrt{x})+C
\end{aligned}
$$

(c) $\int_{0}^{1} 30 x \sqrt{1-x} d x$

Using substitution $u^{2}=1-x$,

$$
\begin{aligned}
2 u d u & =-d x, \quad x=0,1 \Rightarrow u=1,0 \text { resp. } \\
\int_{0}^{1} 30 x \sqrt{1-x} d x & =\int_{1}^{0} 30\left(1-u^{2}\right) u(-2 u) d u=\int_{0}^{1} 60\left(u^{2}-u^{4}\right) d u \\
& =20 u^{3}-\left.12 u^{5}\right|_{0} ^{1}=8
\end{aligned}
$$

