Math 113 – Fall 2005 — key

Departmental Final Exam

PART I: SHORT ANSWER AND MULTIPLE CHOICE QUESTIONS

Do not show your work for problems in this part.

- 1. Fill in the blanks with the correct answer.
 - (a) The integral $\int \cos(x+2) dx$ equals $\int \sin(x+2) + C$
 - (b) The integral $\int \sec x \tan x \, dx$ equals $\underline{\sec(x) + C}$
 - (c) The integral $\int_0^1 \frac{dx}{1+x^2}$ equals $\tan^{-1} x \Big|_0^1 = \frac{\pi}{4}$
 - (d) The integral $\int_0^1 \frac{dx}{\sqrt{1-x^2}}$ equals $\sin^{-1} x \Big|_0^1 = \frac{\pi}{2}$
 - (e) The integral $\int \tan^2 x \, dx$ equals $\int \sec^2(x) 1 \, dx = \tan(x) x + C$
 - (f) The integral $\int_0^1 \frac{dx}{\sqrt{x}}$ equals $2\sqrt{x}\Big|_0^1 = 2$
 - (g) The integral $\int_0^\infty \frac{dx}{x^3}$ equals <u>divergent integral</u>
 - (h) The integral $\int \frac{x}{\sqrt{1+x^2}} dx$ equals $\sqrt{1+x^2} + C$
 - (i) Give the limit of the sequence $\left\{\left(1-\frac{1}{n}\right)^n\right\}$ as $n\to\infty$ if it is convergent, otherwise write DIVERGENT. e^{-1}
 - (j) State the integration by parts formula:

$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx$$

(k) Give a limit definition of the improper integral $\int_0^1 \frac{\sin x}{\sqrt{x}} dx$

$$\lim_{\epsilon \to 0} \int_{\epsilon}^{1} \frac{\sin x}{\sqrt{x}} \, dx$$

(l) State the (2m)-th term of the MacLaurin series for $\frac{\sin x}{x}$

$$\frac{(-1)^m}{(2m+1)!}x^{2m}$$

(m) The integral $\int \cot x \, dx$ equals $\ln(\sin(x)) + C$

2. True/False: Write T if statement always holds, F otherwise.

Let $\sum a_n = \sum_{n=1}^{\infty} a_n$ be an arbitrary series.

- (a) F: need $a_n \to 0$ If $\{a_n\}$ is a positive decreasing sequence then $\sum (-1)^n a_n$ converges.
- (b) T: Divergence test If $\sum a_n$ converges then $a_n \to 0$.
- (c) <u>F: 1-1+1-1...</u> If the partial sums of $\sum a_n$ are bounded, then $\sum a_n$ converges.

Problems 3 through 9 are multiple choice. Each multiple choice problem is worth 3 points. In the grid below fill in the square corresponding to each correct answer.

- 3. The most appropriate first step to integrate $\int \frac{x^2-1}{3x^3-x^2} dx$ would be
 - Integration by parts

(d) Other (non trigonometric) substitution

Partial fractions

- (e) Differentiate the integrand
- Trigonometric Substitution
- (f) None of these
- 4. The series $x^2 + x^4 + \frac{x^6}{2} + \frac{x^8}{6} + \dots = \sum_{n=0}^{\infty} \frac{x^{(2n+2)}}{n!}$ converges to the function

 - (a) $\frac{x^2}{1+x^2}$ (e) $x^2(\sin x^2 + \cos x^2)$

 - (b) $x^2 \tan^{-1} x$ (f) $\sin x^2 + \cos x^2$
- (g) None of these
- (d) $x^2 e^{x^2}$
- 5. The improper integral $\int_{0}^{\infty} xe^{-x}dx$ converges to
 - $(a) \quad 0$
- (b) 1/e
- (c) 1/2
- (g) None of these
- (d)
- (h) It doesn't converge

6. The length of the curve $y = \cosh x$ from x = 0 to x = 1 is

(a) sinh 1

(e) ∞

(b) cosh 1

- (f) a real number in (0,1)
- (c) $\cosh^2 1 \cosh^2 0$
- (g) Imaginary

(d) 1

(h) None of these

7. The area enclosed by the polar curve $r = 3 + \sin \theta$ is

- (a) 5π
- (e) 4.5π
- (b) 4π
- (f) 19π
- (c) 9π
- (g) $9\pi^2$
- (d) $\pi/4$
- (h) None of these: $19\pi/2$

8. The interval of convergence of the power series $\sum_{n=1}^{\infty} n^2 (5x-3)^n$ is

- (a) (-3/5, 3/5)
- (e) (2/5, 4/5)
- (i) None of the above

- (b) (-5/3, 5/3)
- (f) (1/5,1)

(c) (0,1)

- (g) $(0,\infty)$
- (d) (-1,1)
- (h) $(-\infty, \infty)$

9. The coefficient of x^3 in the series expansion of $(1+x)^{1/4}$ is

(a) $\frac{1}{4^3} = \frac{1}{64}$

(e) $\frac{20}{4^3 3!} = \frac{5}{96}$

(i) None of the above

(b) $\frac{1}{4^3 3!} = \frac{1}{384}$

 $(f) \quad \boxed{\frac{21}{4^3 3!} = \frac{7}{128}}$

(c) $\frac{6}{4^3 3!} = \frac{1}{64}$

 $(g) \quad \frac{25}{4^3 3!} = \frac{25}{384}$

(d) $\frac{15}{4^3 3!} = \frac{5}{128}$

 $\text{(h)} \quad \frac{35}{4^3 3!} = \frac{35}{384}$

The answers to the multiple choice MUST be entered on the grid on the previous page. Otherwise, you will not receive credit.

PART II: WRITTEN SOLUTIONS

For problems 10 - 18, write your answers in the space provided. Neatly show your work for full credit.

10. (a) Evaluate the integral $\int_0^1 t^2 e^t dt$.

Let $u = t^2$, $dv = e^t dt$, then du = 2t dt, $v = e^t$,

$$\int_0^1 t^2 e^t \, dt = t^2 e^t \Big|_0^1 - \int_0^1 2t e^t \, dt$$

Let u = 2t, $dv = e^t dt$, then du = 2dt, $v = e^t$,

$$\int_{0}^{1} t^{2}e^{t} dt = e - \left(2te^{t}\Big|_{0}^{1} - \int_{0}^{1} 2e^{t} dt\right)$$
$$= e - (2e - 2(e - 1))$$
$$= e - 2$$

(b) Expand in partial fraction form $\frac{x^2+3}{x^2-1}$.

$$\frac{x^2+3}{x^2-1} = \frac{x^2-1+4}{x^2-1} = 1 + \frac{4}{(x-1)(x+1)} = 1 + 2\frac{1}{x-1} - 2\frac{1}{1+x}$$

(c) Evaluate the integral $\int \frac{x^2+3}{x^2-1} dx$.

$$x + 2\ln\left(\frac{x-1}{x+1}\right)$$

11. Evaluate the integral $\int \frac{1}{4-3\sin x} dx$. Let $z = \tan(x/2)$, then

$$dx = \frac{2 dz}{1 + z^2}, \quad \sin x = \frac{2z}{1 + z^2}$$

$$\int \frac{1}{4 - 3\sin x} dx = \int \frac{1}{4 - 3\frac{2z}{1 + z^2}} \frac{2 dz}{1 + z^2}$$

$$= \int \frac{2}{4z^2 - 6z + 4} dz = \int \frac{1}{2z^2 - 3z + 2} dz$$

$$= \frac{1}{2} \int \frac{1}{\left(z - \frac{3}{4}\right)^2 + \left(\frac{\sqrt{7}}{4}\right)^2} dz$$

Let
$$z - \frac{3}{4} = \frac{\sqrt{7}}{4} \tan t$$
, then $dz = \frac{\sqrt{7}}{4} \sec^2 t dt$ and

$$\int \frac{1}{4 - 3\sin x} dx = \int \frac{2}{\sqrt{7}} dt$$

$$= \frac{2}{\sqrt{7}} t + C$$

$$= \frac{2}{\sqrt{7}} \tan^{-1} \left(\frac{4}{\sqrt{7}} \left(z - \frac{3}{4}\right)\right) + C$$

$$= \frac{2}{\sqrt{7}} \tan^{-1} \left(\frac{4}{\sqrt{7}} \left(\tan \left(\frac{x}{2}\right) - \frac{3}{4}\right)\right) + C$$

$$= \frac{2}{\sqrt{7}} \tan^{-1} \left(\frac{1}{\sqrt{7}} \left(4 \tan \left(\frac{x}{2}\right) - 3\right)\right) + C$$

12. The region bounded by y = x and $y = 2x^2$ is revolved about the **y-axis**; find the volume of the solid generated.

Intersection of curves:

$$x = 2x^2 \Rightarrow x = 0, \frac{1}{2} \Rightarrow \text{ points of intersection: } (0,0), \left(\frac{1}{2}, \frac{1}{2}\right)$$

Disc method:

$$\int_0^{1/2} \pi \left(\sqrt{\frac{y}{2}} \right)^2 - \pi y^2 \, dy = \pi \int_0^{1/2} \frac{y}{2} - y^2 \, dy = \pi \left[\frac{1}{4} y^2 - \frac{1}{3} y^3 \right]_0^{1/2} = \frac{\pi}{48}$$

Shell method:

$$\int_0^{1/2} 2\pi x (x - 2x^2) \, dx = \pi \left[-x^4 + \frac{2}{3} x^3 \right]_0^{1/2} = \frac{\pi}{48}$$

13. Find the area of the surface of revolution generated by revolving the curve $y = \sqrt{x}$, $0 \le x \le 4$, about the x-axis.

Area
$$= \int_0^4 2\pi \sqrt{x} \sqrt{1 + \left(\frac{d\sqrt{x}}{dx}\right)^2} dx$$
$$= \int_0^4 2\pi \sqrt{x} \sqrt{1 + \frac{1}{4x}} dx$$
$$= \pi \int_0^4 \sqrt{1 + 4x} dx$$
$$= \frac{\pi}{4} \cdot \frac{2}{3} (1 + 4x)^{3/2} \Big|_0^4$$
$$= \frac{\pi}{6} \left(17^{3/2} - 1\right)$$

14. Find the centroid of the region bounded by the curves

$$y = \sqrt{1 + x^2}$$
, $x = 1$ and $y = 1 + x$.

Express you answer in terms of unevaluated integrals. (Note: You should simplify the integrands as much as possible.)

The curves $y = \sqrt{1+x^2}$ and y = 1+x intersects at x = 0.

Area of region

$$A = \int_0^1 1 + x - \sqrt{1 + x^2} \, dx$$

Coordinates of centroid (\bar{x}, \bar{y}) :

$$\bar{x} = \frac{\int_0^1 x(1+x-\sqrt{1+x^2}) \, dx}{A}$$

$$\bar{y} = \frac{\int_0^1 \frac{1}{2} \left(1 + x + \sqrt{1 + x^2}\right) \left(1 + x - \sqrt{1 + x^2}\right) dx}{A}$$

$$= \frac{\int_0^1 \frac{1}{2} \left((1 + x)^2 - (1 + x^2)\right) dx}{A}$$

$$= \frac{1}{A} \int_0^1 x dx \quad (= \frac{1}{2}A)$$

15. If a region in the first quadrant, with area 10π and centroid at the point (1, 12), is revolved around the line x = -5, find the resulting volume of revolution.

By the first theorem of Pappus, $V = 2\pi \bar{r}A$.

Now
$$A = 10\pi$$
, $\bar{r} = 1 - (-5) = 6$, so

$$V = 120\pi^2$$

16. Determine whether each infinite series is absolutely convergent, conditionally convergent, or divergent. Give reasons for your conclusion.

(a)
$$\sum_{n=1}^{\infty} \frac{\ln n}{3n+7}$$

Divergent: comparison with harmonic series

$$\sum_{n=3}^{\infty} \frac{\ln n}{3n+7} \ge \sum_{n=3}^{\infty} \frac{1}{3n+7} \ge \sum_{n=3}^{\infty} \frac{1}{6n} = \frac{1}{6} \sum_{n=3}^{\infty} \frac{1}{n}$$

(b)
$$\sum_{n=1}^{\infty} (3^{-n} - 5^{-n})$$

Absolutely convergent: geometric series

$$\sum_{n=1}^{\infty} (3^{-n} - 5^{-n}) = \sum_{n=1}^{\infty} 3^{-n} - \sum_{n=1}^{\infty} 5^{-n}) = \frac{1/3}{1 - 1/3} - \frac{1/5}{1 - 1/5} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

(c)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$

Conditionally convergent: alternating series related to decreasing sequence of positive terms and comparison test

Series is convergent since the sequence $\left\{\frac{1}{n \ln n}\right\}$ is a decreasing sequence of positive terms, hence the alternating series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$ is convergent.

Series is not absolutely convergent since the integral $\int_2^\infty \frac{1}{x \ln x} dx$ is divergent.

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\ln(2n)}$$

Divergent: divergence test

$$\lim_{n \to \infty} \frac{(-1)^n n}{\ln(2n)} = \lim_{n \to \infty} \frac{(-1)^n}{2/n} = \pm \infty \neq 0$$

8

17. (a) Determine the power series expansion of $\int \tan^{-1} x \, dx$.

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \frac{1}{9}x^9 + \dots + \frac{(-1)^n}{2n+1}x^{2n+1} + \dots$$
so
$$\int \tan^{-1} x \, dx = C + \frac{x^2}{2} - \frac{1}{12}x^4 + \frac{1}{30}x^6 + \dots + \frac{(-1)^n}{(2n+1)(2n+2)}x^{2n+2} + \dots$$

(b) Find first two nonzero terms of the Taylor series of $\ln(1 + \sin^2 x)$ at $x = \pi$. What is the remainder after these terms?

From Maclaurin expansion,

$$\ln(1+z) = z - \frac{1}{2}z^2 + \frac{1}{3}z^3 - \frac{1}{4}z^4 + \dots + \frac{(-1)^{n+1}}{n}z^n + \dots$$

As $\sin^2 \pi = 0$, so

$$\ln(1+\sin^2 x) = \sin^2 x - \frac{1}{2}\sin^4 x + \frac{1}{3}\sin^6 x + \cdots$$

Also the Taylor series of $\sin x$ about $x = \pi$ is

$$\sin x = -(x - \pi) + \frac{1}{6} (x - \pi)^3 - \frac{1}{120} (x - \pi)^5 + \cdots$$

Thus

$$\sin^2 x = (x - \pi)^2 - \frac{1}{3} (x - \pi)^4 + \dots$$

Hence

$$\ln(1+\sin^2 x) = (x-\pi)^2 - \frac{1}{3}(x-\pi)^4 - \frac{1}{2}\left((x-\pi)^2 - \frac{1}{3}(x-\pi)^4 + \cdots\right)^2 + \cdots$$
$$= (x-\pi)^2 - \frac{5}{6}(x-\pi)^4 + \cdots$$

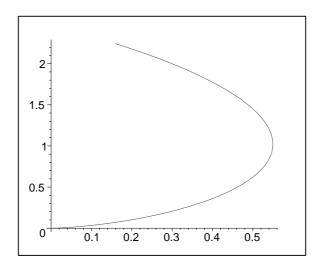
The remainder is given by

$$\int_{\pi}^{x} \frac{1}{5!} \frac{d^{6}}{dx^{6}} \ln(1 + \sin^{2} t) (x - t)^{5} dt \quad \text{or} \quad \frac{1}{6!} \frac{d^{6}}{dx^{6}} \ln(1 + \sin^{2} x) \Big|_{x = \xi} (x - \pi)^{6}$$

where ξ is a number between x and π .

- 18. Given the polar curve $r = \theta^2$, $0 \le \theta \le 3/2$,
 - (a) sketch the curve;

 $\frac{3}{2}$ radian is slightly less than $\frac{\pi}{2}$ radian or 90°. (note: $\frac{3}{2}$ radian is about 86°)



(b) find the area swept out by the curve;

Area =
$$\int_0^{3/2} \frac{1}{2} r^2 d\theta = \int_0^{3/2} \frac{1}{2} \theta^4 d\theta = \frac{1}{10} \left(\frac{3}{2}\right)^5$$

(c) find the arc length.

Arc length
$$= \int_0^{3/2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

$$= \int_0^{3/2} \sqrt{\theta^4 + 4\theta^2} d\theta$$

$$= \int_0^{3/2} \theta \sqrt{\theta^2 + 4} d\theta$$

$$= \frac{1}{3} (t^2 + 4)^{3/2} \Big|_0^{3/2}$$

$$= \frac{125}{24} - \frac{8}{3}$$

$$= \frac{61}{24}$$

-End-