CHRISTOPHER P. GRANT

Contact Information

- Mail: 241 TMCB

Department of Mathematics
Brigham Young University
Provo, UT 84602

- Email: chrisgrant5@icloud.com

Professional Studies

- B.S.: Brigham Young University, 1986, Mathematics, Summa Cum Laude. Spencer W. Kimball Scholar: 1980-81, 1983-86.
- M.S.: Brigham Young University, 1988, Mathematics. Advisor: Peter Bates. National Science Foundation Graduate Research Fellowship: 1987-1988.
- Ph.D.: University of Utah, 1991, Mathematics. Advisor: Paul Fife. National Science Foundation Graduate Research Fellowship: 1988-1990. University of Utah Graduate Research Fellowship: 1990-1991.

Professional Experience

- Associate Chair: Brigham Young University, Department of Mathematics, August 2000-July 2006.
- Assistant Chair: Brigham Young University, Department of Mathematics, March 2000-July 2000.
- Acting Assistant Chair: Brigham Young University, Department of Mathematics, February 1999-March 2000.
- Associate Professor: Brigham Young University, Department of Mathematics, August 1998-Present.
- Assistant Professor: Brigham Young University, Department of Mathematics, August 1993-August 1998.
- Postdoctoral Research Fellow: Georgia Institute of Technology, Center for Dynamical Systems and Nonlinear Studies, September 1991-July 1993.
- Teaching Fellow: University of Utah, Department of Mathematics, August 1988August 1991.
- Research Technician: Eyring Research Institute, May 1984-August 1987.

Scholarly Publications

- Using Fluorescence Recovery After Photobleaching data to Uncover Filament Dynamics, PLoS Computational Biology, 18 (2022), e1010573, with J. C. Dallon, Cécile Leduc, Emily J. Evans, Sandrine Etienne-Manneville, and Stéphanie Portet.
- Mean Square Displacement for a Discrete Centroid Model of Cell Motion, PLoS One. 16 (2021), e0261021, with Mary Ellen Rosen and J. C. Dallon.
- A Continuous-Time Stochastic Model of Cell Motion in the Presence of a Chemoattractant, Discrete and Continuous Dynamical Systems. Series B, 25 (2020), 4839-4852, with J. C. Dallon, Lynnae C. Despain, and Emily J. Evans.
- Results from a Differential Equation Model for Cell Motion with Random Switching Show that the Model Cell Velocity is Asymptotically Independent of Force, Journal of Differential Equations, 268 (2019), 301-317, with J. C. Dallon, Emily J. Evans, and W. V. Smith.
- A Continuous-time Model of Centrally Coordinated Motion with Random Switching, Journal of Mathematical Biology, 74 (2017), 727-753, with J. C. Dallon, Lynnae C. Despain, Emily J. Evans, and W. V. Smith.
- Cell Speed is Independent of Force in a Mathematical Model of Amoeboidal Cell Motion with Random Switching Terms, Mathematical Biosciences, 246 (2013), 1-7, with J. C. Dallon, E. J. Evans, and W. V. Smith.
- A Sharkovsky Theorem for Non-Locally Connected Spaces, Discrete and Continuous Dynamical Systems - Series A, 32 (2012), 3485-3499, with Gregory R. Conner and Mark H. Meilstrup.
- Resistance and Conductance in Structured Zermelo Tournaments, Advances in Applied Mathematics, 44 (2010), 37-52, with Gregory R. Conner and Benjamin Z. Webb.
- Neighborhood Monotonicity, the Extended Zermelo Model, and Symmetric Knockout Tournaments, Discrete Mathematics, 309 (2009), 3998-4010, with Gregory R. Conner.
- The Rasch Model and Additive Conjoint Measurement, Journal of Applied Measurement, 10 (2009), 348-354, with Van A. Newby, Gregory R. Conner, and C. Victor Bunderson.
- Blowup in a Mass-Conserving Convection-Diffusion Equation with Superquadratic Nonlinearity, Proceedings of the American Mathematical Society, 129 (2001), 3353-3362, with Todd L. Fisher .
- Grain Sizes in the Discrete Allen-Cahn and Cahn-Hilliard Equations, Discrete and Continuous Dynamical Systems, 7 (2001) 127-146.
- Superabundance of Stationary Solutions for the Discrete Allen-Cahn Equation, Dynamics of Continuous, Discrete, \& Impulsive Systems, 8B (2001) 71-92.
- An Extension of Zermelo's Model for Ranking by Paired Comparisons, with Gregory R. Conner, European Journal of Applied Mathematics, 11 (2000) 225-247, with Gregory R. Conner.
- Interior Blowup in a Convection-Diffusion Equation, SIAM Journal on Mathematical Analysis, 29 (1998) 1447-1458.
- Asymptotics of Blowup for a Convection-Diffusion Equation with Conservation, Differential and Integral Equations 9 (1996) 719-728, with Gregory R. Conner.
- Slowly-Migrating Transition Layers for the Discrete Allen-Cahn and Cahn-Hilliard Equations, Nonlinearity 8 (1995) 861-876, with Erik Van Vleck.
- Slow Motion in One-Dimensional Cahn-Morral Systems, SIAM Journal on Mathematical Analysis 26 (1995) 21-34.
- Spinodal Decomposition for the Cahn-Hilliard Equation, Communications in Partial Differential Equations 18 (1993) 453-490.
- The Dynamics of Pattern Selection for the Cahn-Hilliard Equation, Ph.D. Dissertation, University of Utah, August 1991.
- A Property of Two Dimensions, Solution to Advanced Problem 6593, American Mathematical Monthly 98 (1991) 65-67, with Michel Balazard.
- Blow Up for a Diffusion-Advection Equation, Proceedings of the Royal Society of Edinburgh 113A (1989) 181-190, with Nicholas Alikakos and Peter Bates.
- Stabilization and Blow-up of Solutions of a Nonlinear Parabolic Equation, M.S. Thesis, BYU, December 1988.

Conference Talks and Invited Presentations

- Ernst Zermelo and the Ranking of Tournaments, Brigham Young University Mathematics Colloquium, November 2007.
- Equilibria of the Discrete Allen-Cahn and Cahn-Hilliard Equations, Year 2000 International Conference on Dynamical Systems and Differential Equations (Kennesaw, Georgia), May 2000.
- One-Dimensional Discrete Allen-Cahn and Cahn-Hilliard Equations, NIST Workshop on Lattice Differential Equations (Gaithersburg, Maryland), July 1999.
- Pattern Evolution in the Discrete Cahn-Hilliard Equation, SIAM Conference on Applications of Dynamical Systems (Snowbird, Utah), May 1999.
- Computational Issues in the Extended Zermelo Model, SIAM Annual Meeting (Atlanta), May 1999.
- Stability, Instability, and Dormant Instability in Lattice Differential Equations, Third Americas Conference on Differential Equations and Nonlinear Analysis (Atlanta), September 1998.
- Grain Sizes in the Discrete Allen-Cahn and Cahn-Hilliard Equations, SIAM Annual Meeting (Toronto), July 1998.
- Materials Science and Slow Evolution, Utah State University Research Experience for Undergraduates, June 1998.
- An Extension of the Bradley-Terry Model for Incomplete Tournaments without Strong Connectedness, SIAM Annual Meeting (Stanford, California), July 1997.
- The Attractor of the Discrete Allen-Cahn Equation, Lookout Mountain Workshop on Phase Transitions in Allen-Cahn and Cahn-Hilliard Equations (Golden, Colorado), June 1997.
- Transition from Slow Motion to Pinning in Lattice Equations, SIAM Conference on Applications of Dynamical Systems (Snowbird, Utah), May 1997.
- Slow Motion and Pinning in Lattice Differential Equations, International Conference on Dynamical Systems and Differential Equations (Springfield, Missouri), May 1996.
- Asymptotic Behavior of a Flux-Conservative Convection-Diffusion Equation, SIAM Annual Meeting (Charlotte), October 1995.
- Asymptotic Behavior of a Flux-Conservative Convection-Diffusion Equation, Nonlinear Analysis and Differential Equations Workshop (Salt Lake City, Utah), May 1995.
- Slowly-Migrating Transition Layers for the Discrete Allen-Cahn and Cahn-Hilliard Equations, SIAM Annual Meeting (San Diego), July 1994.
- Lattice Differential Equations Resulting from the Allen-Cahn and Cahn-Hilliard Equations, Nonlinear Analysis and Differential Equations Workshop (Logan, Utah), September 1993.
- Slow Motion in Lattice Systems of Differential Equations, Georgia Tech Dynamical Systems Seminar, June 1993.
- The Cahn-Hilliard Equation from a Dynamical Systems Perspective, Brigham Young University Mathematics Colloquium, February 1993.
- The Cahn-Hilliard Equation from a Dynamical Systems Perspective, Vanderbilt University Mathematics Colloquium, February 1993.
- Dynamical Systems Aspects of the Cahn-Hilliard Equation, University of Tennessee Mathematics Colloquium, February 1993.
- Slow Coarsening in Multicomponent Mixtures, McMaster University Applied Analysis Seminar, January 1993.
- Slow Coarsening in Multicomponent Mixtures, Brigham Young University Differential Equations Seminar, December 1992.
- Slow Coarsening in Multicomponent Mixtures, University of Tennessee Differential Equations Seminar, November 1992.
- Dynamical Metastability in Cahn-Hilliard-Morral Systems, SIAM Conference on Applications of Dynamical Systems (Snowbird, Utah), October 1992.
- The Dynamics of Pattern Formation for the Cahn-Hilliard Equation, Cornell University Dynamics Seminar, February 1991.
- The Dynamics of Pattern Formation for the Cahn-Hilliard Equation, Georgia Tech CDSNS Seminar, February 1991.
- Blow-up of Solutions to Certain Parabolic Equations, Heriot-Watt University Conference on Reaction Diffusion Equations (Edinburgh, Scotland), June 1988.
- Blowup and Stabilization of the Solutions to a Parabolic Equation with a Nonlinear Convection Term, BYU Spring Research Conference, March 1988.

Curricular Material

- Applied Discrete Probability, E-text, 123 pages, 2017.
- Collective Choice for Mathematicians: Voting, Matching, Division, and More, E-text, 136 pages, 2013.
- Theory of Ordinary Differential Equations, E-text for Math 634, 166 pages, revised 2008.
- The History of Mathematics, Lecture notes for Math 300, 48 pages, 2006.

Awards

- Distinguished Citizenship Award, BYU Department of Mathematics, December 2018.
- Distinguished Citizenship Award, BYU Department of Mathematics, December 2014.
- Distinguished Teaching Award, BYU Department of Mathematics, 2009.
- Excellence in Teaching (10+ years), BYU College of Physical \& Mathematical Sciences, 2008.
- Savage Distinguished Teaching Award, BYU Department of Mathematics, 2007.
- Distinguished Service Award, BYU Department of Mathematics, 2006.

Grants

- Non-convex Energies and Dynamical Metastability, Award No. 9501060, National Science Foundation, Division of Mathematical Sciences, Applied Mathematics Program, June 1995-May 1998.

Courses Taught

- Math 112 (Calculus 1)
- Math 113 (Calculus 2)
- Math 190 (Fundamentals of Mathematics)
- Math 290 (Fundamentals of Mathematics)
- Math 300 (History of Mathematics)
- Math 303 (Mathematics for Engineering 2)
- Math 311 (Numerical Methods)
- Math 313 (Elementary Linear Algebra)
- Math 315 (Theory of Analysis 1)
- Math 316 (Theory of Analysis 2)
- Math 334 (Ordinary Differential Equations)
- Math 341 (Theory of Analysis 1)
- Math 344 (Mathematical Analysis 1)
- Math 346 (Mathematical Analysis 2)
- Math 350 (Combinatorics)
- Math 413 (Advanced Linear Algebra)
- Math 431 (Probability Theory)
- Math 434 (Ordinary Differential Equations)
- Math 447 (Introduction to Partial Differential Equations)
- Math 460 (Topics in Geometry)
- Math 513 (Advanced Topics in Applied Mathematics)
- Math 521 (Methods of Applied Mathematics 1)
- Math 522 (Methods of Applied Mathematics 2)
- Math 541 (Real Analysis 1)
- Math 542 (Real Analysis 2)
- Math 543 (Advanced Probability 1)
- Math 544 (Advanced Probability 2)
- Math 634 (Theory of Ordinary Differential Equations 1)
- Math 635 (Theory of Ordinary Differential Equations 2)
- Math 636 (Advanced Probability 1)
- Math 637 (Advanced Probability 2)
- Math 640 (Nonlinear Analysis)
- Math 641 (Functions of a Real Variable)
- Math 642 (Functions of Real and Complex Variables 2)
- Math 647 (Theory of Partial Differential Equations 1)

