Math 112 (Calculus I) Final Exam Form A KEY

Multiple Choice. Fill in the answer to each problem on your scantron. Make sure your name, section and instructor is on your scantron.

1. Simplify
$$\sin(\tan^{-1}\frac{5}{12})$$
:
a) 1 b) $\frac{4}{5}$ c) $\frac{3}{4}$
d) $\frac{5}{13}$ e) $\frac{12}{13}$ f) 3
g) None of the above.
Solution: d)
2. Find $\lim_{x\to 1} \frac{x^2 + x + 2}{2x^2 + x - 3}$
a) Does not exist b) -1 c) 2
d) $\frac{1}{2}$ e) 4 f) $\frac{1}{4}$

g) None of the above.

Solution: a)

3. If
$$f(x) = Ax^2 + Bx + C$$
, find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.
a) $Ax^2 + Bx$
b) $2Ax + B$
c) $2Ax^2 + Bx + C$
d) $2Ax^2 + Bx$
e) 0
f) Does not exist.

Solution: b)

- 4. The derivative of $h(x) = x^{2x}$ is
 - a) $2x^{2x-1}$ b) $2x \cdot x^{2x-1}$ c) $x^{2x} \ln x$ d) $2x^{2x}(1+\ln x)$ e) $2x^{2x}$

Solution: d)

5. The equation of the tangent line to

$$y = \sin^{2} x$$

at $(\frac{\pi}{6}, \frac{1}{4})$ is
a) $y = \frac{1}{4} + 2(x - \frac{\pi}{6}) \sin x \cos x$ b) $y = \frac{\sqrt{3}}{2}x + \frac{3 - \pi\sqrt{3}}{12}$ c) $y = \frac{1}{4}$
d) $y = \frac{1}{2}x + \frac{3 - \pi}{12}$ e) None of the above.

- 6. For the function $f(x) = x^2$, for which value of c is f'(c) equal to the average rate of change of f on [0,3]?
 - a) 0 b) $\frac{3}{2}$ c) 3 d) $\frac{5}{2}$ e) 6 f) There is no such c.
 - g) None of the above.

Solution: b)

- 7. A farmer wishes to fence in 100 square feet of area into two adjoining rectangular regions. The outside fence costs \$8 per linear foot and the dividing fence inside costs \$9 per linear foot. What is the minimal cost to fence the region?
 - a) \$ 100
 b) \$ 200
 c) \$ 300

 d) \$ 400
 e) \$ 600
 f) None of the above.

above.

Solution: d)

8.
$$\int_{0}^{1} x\sqrt{1+3x^{2}} dx =$$

a) $\frac{1}{9}$
b) $\frac{7}{9}$
c) $\frac{7}{3}$
d) 7
e) 10
f) None of the

Solution: b)

Short Answer. Fill in the blank with the appropriate answer.

- 9. (10 points)
 - (a) Let $f(x) = c \cdot a^x$ be an exponential function, where f(1) = 3 and f(2) = 12. Write out

the equation for f(x), replacing a and c by their actual values. $f(x) = \frac{3}{4} \frac{4^x}{4}$

(b) Simplify <u>completely</u> to a single expression: $2\ln(b) - 3\ln(a) + 4\ln(2) + \ln(3) = \ln\left(\frac{48b^2}{a^3}\right)$

(c)
$$\frac{d}{dx}(\ln(\cosh x)) = \frac{\sinh x}{\cosh x} = \tanh x$$

(d)
$$\frac{d}{dx}(\pi^2 + e^3) = \underline{0}$$

(e)
$$\frac{d}{dx}\ln(2x+1) = \frac{2}{2x+1}$$

- (f) The equation of the tangent line to the curve $y = xe^{x^2}$ at (0,0) is $\underline{y} = \underline{x}$.
- (g) Use linear approximation to estimate $\sqrt[3]{8.006}$:2.0005

(h) If
$$f'(x) = 3x^2 + 2x - \frac{5}{x}$$
, then $\underline{f(x)} = x^3 + 2x - 5\ln|x| + C$

(i)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^2}{n^2} \cdot \frac{1}{n}$$
 represents what definite integral? $\underline{\int_{0}^{1} x^2 dx}$

(j) $\int_{1}^{9} \frac{1}{x^{3/2}} dx = \frac{4}{3}$

Free Response. For problems 10 - 17, write your answers in the space provided. Use the back of the page if needed, indicating that fact. Neatly show all work.

- 10. (8 points)
 - (a) State the definition of the derivative.Solution: Either

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

or

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

is acceptable.

(b) Find f'(2) where $f(x) = \frac{1}{x-1}$ using the definition of the derivative.

Solution:

Version A:

$$f'(2) = \lim_{x \to 2} \frac{\frac{1}{x-1} - 1}{x-2}$$
$$= \lim_{x \to 2} \frac{1 - (x-1)}{(x-2)(x-1)} = \lim_{x \to 2} \frac{-1}{x-1} = -1.$$

Version B:

$$f'(-1) = \lim_{x \to -1} \frac{\frac{1}{x-1} - \left(\frac{-1}{2}\right)}{x - (-1)}$$
$$= \lim_{x \to -1} \frac{2 + (x-1)}{2(x-1)(x+1)} = \lim_{x \to -1} \frac{1}{2(x-1)} = -\frac{1}{4}$$

11. (8 points) Given the equation

$$x^6 + 3xy + y^5 = 5,$$

find y' at the point (1, 1). Solution: We differentiate implicitly:

Version A:

$$6x^5 + 3y + 3xy' + 5y^4y' = 0$$

Substituting 1 for x and 1 for y, we have

$$9 + 8y' = 0$$

or $y' = -\frac{9}{8}$. Version B:

$$6x^{5} + 2y + 2xy' + 10y^{4}y' = 0$$
$$8 + 12y' = 0$$
$$y' = -\frac{2}{3}.$$

12. (8 points) The volume of a sphere is increasing at a rate of 3 cubic centimeters per second. How fast is the radius increasing when the radius is 10 centimeters?

Solution:

$$V = \frac{4}{3}\pi r^3$$
$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$$

Version A:

$$3 = 4\pi (100) \frac{dr}{dt}$$
$$\frac{dr}{dt} = \frac{3}{400\pi} \text{ cm/s}$$

Version B:

$$2 = 4\pi(81)\frac{dr}{dt}$$
$$\frac{dr}{dt} = \frac{1}{162\pi} \text{ cm/s}$$

13. (8 points) Find all local extrema of the function

$$f(x) = (x^2 - 3)e^x,$$

and classify them as local maxima or local minima. Solution:

$$f'(x) = 2xe^{x} + (x^{2} - 3)e^{x} = (x^{2} + 2x - 3)e^{x} = (x + 3)(x - 1)e^{x}.$$

Thus, x = -3 and x = 1 are critical points.

$$f''(x) = (2x+2)e^x + (x^2+2x-3)e^x = (x^2+4x-1)e^x.$$

$$f''(-3) = (9-12-1)e^{-3} < 0$$

$$f''(1) = (1+4-1)e^1 > 0.$$

Thus, f has a maximum of $f(-3) = 6e^{-3}$ and a minimum of f(1) = -2e.

For questions 14 to 15, find the limits.

14. (8 points) $\lim_{x\to\infty} \frac{\ln(\ln x)}{3x}$ Solution: We use L'Hopital's rule:

$$\lim_{x \to \infty} \frac{\ln(\ln x)}{3x} = \lim_{x \to \infty} \frac{\frac{1}{x \ln x}}{3} = \lim_{x \to \infty} \frac{1}{3x \ln x} = 0$$

15. (8 points) $\lim_{x\to\infty} x^2 \ln(1-\frac{1}{x})$ Solution: Again, using L'hopital's rule,

$$\lim_{x \to \infty} x^2 \ln(1 - \frac{1}{x}) = \lim_{x \to \infty} \frac{\ln(1 - \frac{1}{x})}{\frac{1}{x^2}}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{1 - \frac{1}{x}} \cdot \frac{1}{x^2}}{-\frac{2}{x^3}} = \lim_{x \to \infty} \frac{x}{-2(1 - \frac{1}{x})} = \infty.$$

16. (9 points) Find the following:

(a) $\int (x^3 + x^{-3}) dx$ Solution:

Version A:

$$\frac{x^4}{4} - \frac{1}{2x^2} + C$$

Version B:

$$\frac{x^5}{5} - \frac{1}{x} + C$$

(b) $\int \frac{1 + \cos^2 x}{\cos^2 x} dx$ Solution:

Version A:

$$\int \sec^2 x + 1 \, dx = \tan x + x + C$$

Version B:

$$\int \frac{1}{t^2} - \frac{1}{t} \, dt = -\frac{1}{t} - \ln|t| + C$$

(c) $\int_0^2 x(\sqrt[3]{x} + \sqrt[5]{x}) dx$ Solution:

Version A:

$$\int_0^2 x^{4/3} + x^{6/5} \, dx = \left(\frac{3}{7}x^{7/3} + \frac{5}{11}x^{11/5}\right)_0^2 = \frac{12}{7}2^{1/3} + \frac{20}{11}2^{1/5}.$$

Version B:

$$\int_0^2 x^{5/3} + x^{6/5} \, dx = \left(\frac{3}{8}x^{8/3} + \frac{5}{11}x^{11/5}\right)_0^2 = \frac{3}{2}2^{2/3} + \frac{20}{11}2^{1/5}.$$

17. (9 points) Sketch the curve of

$$f(x) = \frac{x-1}{x^2},$$

labelling all asymptotes, intercepts, local max and mins, and inflection points.

Solution: Note: This problem can also be done by rewriting the function as

$$f(x) = x^{-1} - x^{-2}.$$

the solution will be given without the simplification in case some students do it that way. Clearly, the function has a vertical asymptote at x = 0 and a horizontal asymptote at y = 0. Also, (1,0) is the only intercept.

$$f'(x) = \frac{x^2 - 2x(x-1)}{x^4} = \frac{2-x}{x^3}$$

The only critical point, therefore is x = 2.

$$f''(x) = \frac{-x^3 - (2-x)3x^2}{x^6} = \frac{2x - 6}{x^4}$$

Notice that f''(2) < 0, so we have a local maximum at $(2, \frac{1}{4})$. Also, f''(3) = 0. Since f''(-1) < 0, f is concave down on $(-\infty, 0)$. As f''(2) < 0, f is concave down on (0, 3). As f''(4) > 0, f is concave up on $(3, \infty)$. Thus, $(3, \frac{2}{9})$ is an inflection point.

