PH. D. QUALIFYING EXAM SPRING 2009 - ALGEBRA

Answer all of the questions.

1. Let G be a group of odd order and let $x \in G$. Show that if x is conjugate to x^{-1}, then x is the identity element.

2. Let G be a finite group and let p be a prime. Write $|G| = p^m a$, where $\gcd(p, a) = 1$. Prove that G has a subgroup of order p^m. Such a subgroup is called a Sylow p subgroup of G.

3. Let G be a finite abelian group. Prove the equivalence of:
 (1) G is cyclic;
 (2) Every subgroup of G is cyclic.

4. Determine (up to isomorphism) the possible group structures on a set with 6 elements.

5. Let A be a commutative ring with identity $1 \neq 0$. Determine (up to isomorphism) all the possibilities for A if $|A| = 4$.

6. Let $T : V \to W$ be a linear transformation of vector spaces of dimension n, m (possibly infinite). Show that
 \[\dim \ker T + \dim \text{Im}(T) = n. \]
 Here $\text{Im}(T)$ is the image of T and $\ker T$ is the kernel of T.

7. What is the Galois group of the polynomial $x^4 + 25 \in \mathbb{Q}[x]$ (it will suffice to list generators for the Galois group and then determine its isomorphism class).

8. Let R be a ring with identity and let $e \in R$ be an idempotent, so that $e^2 = e$. Assume that e is central, so that $er = re$ for all $r \in R$. Show that eR and $(1-e)R$ are 2-sided ideals of R and that $R \cong eR \times (1-e)R$.

9. Let R be a commutative ring with identity $1 \neq 0$.
 a) Show that any proper ideal of R is contained in a maximal ideal.
 b) Show that R has a quotient which is a field.

10. State and prove Eisenstein’s criterion for irreducibility of polynomials over \mathbb{Z}.