Ph.D. QUALIFIER EXAMINATION: ANALYSIS
Fall 2009

Instructions: Answer exactly 6 of the 10 questions given. If you answer more than 6 questions, your grade will be determined by the first 6 questions that you answered.

Some Notation.
1. \mathbb{R}^k – Euclidean k-dimensional space
2. \mathbb{C} – the complex numbers
3. (X, \mathcal{M}, μ) – a measure space where X is a set, \mathcal{M} is a σ-algebra of subsets of X, and μ is a measure on \mathcal{M}
4. a.e.$[\mu]$ – almost every with respect to the measure μ
5. m – Lebesgue measure on \mathbb{R}^k
6. $\|f\|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p}$ – the L^p-norm of a μ-measurable function $f : X \to \mathbb{C}$
7. $\|f\|_\infty$ – the essential supremum of f
8. p, q – conjugate exponents where $\frac{1}{p} + \frac{1}{q} = 1$
9. $L^p(\mu)$ – the space of μ-measurable functions $f : X \to \mathbb{C}$ with $\|f\|_p < \infty$
10. $L^p(\mathbb{R}^k)$ – the space of Lebesgue measurable functions $f : \mathbb{R}^k \to \mathbb{C}$ with $\|f\|_p < \infty$
11. $\|\Gamma\| = \sup\{\|\Gamma x\| : x \in X, \|x\| \leq 1\}$ – operator norm of a linear transformation $\Gamma : X \to Y$ where X and Y are normed linear spaces
12. $|\lambda|$ – the total variation of a measure λ.
13. $\lambda \ll \mu$ – the measure λ is absolutely continuous with respect to the measure μ
14. $\lambda \perp \mu$ – the measures λ and μ are mutually singular
15. $\frac{d\lambda}{d\mu}$ – the Radon-Nikodym derivative of λ with respect to μ where $\lambda \ll \mu$
16. Lip α – the space of complex functions f on $[a, b]$ for which $\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\alpha} < \infty$; here $0 < \alpha \leq 1$
17. $f * g$ – the convolution of f and g: $(f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x - y)g(y) \, dy$
18. $C_c(\mathbb{R}^k)$ – the continuous complex functions on \mathbb{R}^k whose support is compact.
19. $\hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ixt} \, dx$ – the Fourier transform
Questions

1. State and prove Fatou’s Lemma. [You may assume the Monotone Convergence Theorem in your proof.]

2. Let A be a compact subset of \mathbb{R}^k. Prove that if f is a bounded complex Lebesgue measurable function on \mathbb{R}^k whose support is a subset of A, then for each $\epsilon > 0$ there exists $g \in C_c(\mathbb{R}^k)$ such that $m(\{x \in \mathbb{R}^k : f(x) \neq g(x)\}) < \epsilon$.

3. Let S be the class of all complex, measurable, simple functions on X such that $\mu(\{x : s(x) \neq 0\}) < \infty$. If $1 \leq p < \infty$, prove that S is dense in $L^p(\mu)$.

4. Find a nonempty closed subset in $L^2(T)$ that contains no element of smallest norm. [Recall that $L^2(T)$ is the Hilbert space of all complex, Lebesgue measurable 2π-periodic functions on \mathbb{R}.]

5. State and prove the Banach-Steinhaus Theorem. [You may assume Baire’s Theorem in your proof.

6. Let $L^\infty = L^\infty(m)$ where m is Lebesgue measure on $I = [0, 1]$. Show that there is a bounded linear functional $\Lambda \neq 0$ on L^∞ that is 0 on $C(I)$, the space of continuous functions on I. Show further that there is no $g \in L^1(m)$ such that $\Lambda(f) = \int_I fg \, dm$ for all $f \in L^\infty$. [You may assume the Hahn-Banach Theorem in your proof.]

7. For a complex measure μ, prove that

$$|\mu|(E) = \sup \left\{ \left| \int_E f \, d\mu \right| : f \text{ is measurable and } |f| \leq 1 \right\}$$

for every $E \in \mathcal{M}$.

8. If $f \in \text{Lip } 1$ on $[a, b]$, prove that f is absolutely continuous and that $f' \in L^\infty$.

9. For $n = 1, 2, 3, \ldots$, let g_n be the characteristic function of $[-n, n]$. Compute $g_n \ast g_1$ explicitly. Prove there is a function $f_n \in L^1$ such that

$$g_n \ast g_1 = \hat{f}_n.$$

Show that $\|f_n\|_1 \to \infty$ as $n \to \infty$.

10. State and prove the Residue Theorem. [You may assume Cauchy’s Theorem in your proof.]