1. Prove that if R is a commutative ring with 1, then every maximal ideal of R is prime.

2. Let p and q be distinct primes. Prove that any group of order pq is solvable.

3. Define the commutator subgroup G' of a group G, and prove that if N is a normal subgroup of G such that G/N is abelian, then G' is a subgroup of N.

4. Determine (with proof) a complete set of representatives of the conjugacy classes of the group $\text{GL}_3(\mathbb{F}_2)$. Be sure that your list has no repetition.

5. Let m and n be positive integers. Compute (with justification) $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$.

6. Let R be a commutative ring with 1. Prove carefully that every proper ideal of R is contained in a maximal ideal of R.

7. Let R be a commutative ring with 1, and let I_1, \ldots, I_n be ideals of R. If
 \[J = I_1 \cap I_2 \cap \cdots \cap I_n \]
 is a prime ideal of R, show that at least one of the ideals I_k, with $k \in \{1, \ldots, n\}$, is prime.

8. Find the Galois group of $x^5 - 4x^3 + 2$ over \mathbb{Q}.

9. Prove that no finite field is algebraically closed.

10. Determine (with proof) the number of irreducible degree 6 polynomials in $\mathbb{F}_2[x]$.