Ph.D. QUALIFIER EXAMINATION: ANALYSIS

Fall 2004

Instructions: Answer *exactly* 6 of the 10 questions given. If you do more than 6 questions, your grade will be determined by the first 6 questions that you answered.

Some Notation.

1. \mathbb{R}^k – Euclidean k-dimensional space
2. \mathbb{C} – the complex numbers
3. (X, \mathcal{M}, μ) – a measure space where X is a set, \mathcal{M} is a σ-algebra of subsets of X, and μ is a measure on \mathcal{M}
4. a.e.$[\mu]$ – almost every with respect to the measure μ
5. m – Lebesgue measure on \mathbb{R}^k
6. $\|f\|_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}$ – the L^p-norm of a μ-measurable function $f : X \to \mathbb{C}$
7. $\|f\|_\infty$ – the essential supremum of f
8. p, q – conjugate exponents where $\frac{1}{p} + \frac{1}{q} = 1$
9. $L^p(\mu)$ – the space of μ-measurable functions $f : X \to \mathbb{C}$ with $\|f\|_p < \infty$
10. $L^p(\mathbb{R}^k)$ – the space of Lebesgue measurable functions $f : \mathbb{R}^k \to \mathbb{C}$ with $\|f\|_p < \infty$
11. $|\lambda|$ – the total variation of a measure λ.
12. $\lambda \ll \mu$ – the measure λ is absolutely continuous with respect to the measure μ
13. $\lambda \perp \mu$ – the measures λ and μ are mutually singular
14. $\frac{d\lambda}{d\mu}$ – the Radon-Nikodym derivative of λ with respect to μ where $\lambda \ll \mu$
15. Lip α – the space of complex functions f on $[a, b]$ for which $\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\alpha} < \infty$; here $0 < \alpha \leq 1$
16. $f * g$ – the convolution of f and g: $(f * g)(x) = \int_{-\infty}^{\infty} f(x - y) g(y) \, dy$
17. $C_0(\mathbb{R})$ – the continuous complex functions on \mathbb{R} which vanish at infinity
18. $\hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{-i xt} \, dm(x)$ – the Fourier transform
1. State and prove Lebesgue’s Dominated Convergence Theorem. [You may assume Fatou’s Lemma in your proof.]

2. Construct a sequence of continuous functions \(f_n \) on \([0, 1]\) such that \(0 \leq f_n \leq 1 \) and
\[
\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 0,
\]
but the sequence \(\{f_n(x)\} \) does not converge for any \(x \in [0, 1] \).

3. Suppose \(1 \leq p < q < r \leq \infty \). Prove that if \(f \in L^p(\mu) \cap L^r(\mu) \), then \(f \in L^q(\mu) \).

4. Suppose that \(X \) and \(Y \) are Banach spaces. Suppose that \(\Lambda : X \to Y \) is a linear mapping with the property that for every sequence \(\{x_n\} \) in \(X \) such that \(x = \lim x_n \) and \(y = \lim \Lambda x_n \) exist, it follows that \(y = \Lambda x \). Prove that \(\Lambda \) is continuous. [You may assume that a continuous, one-to-one linear mapping from one Banach space onto another Banach space has an inverse that is a continuous linear mapping.]

5. Let \(\{f_n\} \) be a sequence of continuous complex functions on a nonempty complete metric space \(X \) such that \(f(x) = \lim f_n(x) \) exists for every \(x \in X \) (i.e. \(f_n \to f \) pointwise). Prove for every \(\epsilon > 0 \) there is a nonempty open set \(V \) and a positive integer \(N \) such that \(|f(x) - f_n(x)| \leq \epsilon \) whenever \(x \in V \) and \(n \geq N \).

6. Suppose that \(\mu \) and \(\lambda \) are measures on a \(\sigma \)-algebra \(\mathcal{M} \) with \(\mu \) positive and \(\lambda \) complex. Prove that \(\lambda \ll \mu \) if and only if for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(|\lambda(E)| < \epsilon \) for all \(E \in \mathcal{M} \) with \(\mu(E) < \delta \).

7. Let \(\mu \) be a complex Borel measure on \(\mathbb{R}^k \). Define the symmetric derivative, \(D\mu \), of \(\mu \) with respect to \(m \). Define a Lebesgue point of an \(L^1(\mathbb{R}^k) \) function. Prove that if \(\mu \ll m \) and \(f \) is the Radon-Nikodym derivative of \(\mu \) with respect to \(m \), then
\[
D\mu = f \text{ a.e.} \, [m], \quad \text{and} \quad \mu(E) = \int_E (D\mu) \, dm.
\]
[You may assume that almost every \(x \in \mathbb{R}^k \) is a Lebesgue point of an \(L^1(\mathbb{R}^k) \) function.]

8. Suppose \(p \) and \(q \) are conjugate exponents with \(1 < p < \infty \), and set \(\alpha = 1/q \). Prove that if \(f \) is absolutely continuous on \([a, b]\) and \(f' \in L^p \), then \(f \in \text{Lip} \, \alpha \).

9. Prove that if \(f, g \in L^1(\mathbb{R}) \), then \(f \ast g \) is \(L^1(\mathbb{R}) \) with \(\|f \ast g\|_1 \leq \|f\|_1 \|g\|_1 \).

10. Prove that if \(f \in L^1(\mathbb{R}) \), then \(\hat{f} \in C_0(\mathbb{R}) \) and \(\|\hat{f}\|_\infty \leq \|f\|_1 \). [You may assume for each \(x \in \mathbb{R} \) that the map \(y \to f(x - y) \) from \(\mathbb{R} \) to \(L^1(\mathbb{R}) \) is uniformly continuous.]