Ph.D. QUALIFIER EXAMINATION: ANALYSIS
Winter 2005

Instructions: Answer exactly 6 of the 10 questions given. If you do more than 6 questions, your grade will be determined by the first 6 questions that you answered.

Some Notation.

1. \mathbb{R}^k – Euclidean k-dimensional space
2. \mathbb{C} – the complex numbers
3. (X, \mathcal{M}, μ) – a measure space where X is a set, \mathcal{M} is a σ-algebra of subsets of X, and μ is a measure on \mathcal{M}
4. a.e.$[\mu]$ – almost every with respect to the measure μ
5. m – Lebesgue measure on \mathbb{R}^k
6. $\|f\|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p}$ – the L^p-norm of a μ-measurable function $f : X \to \mathbb{C}$
7. $\|f\|_\infty$ – the essential supremum of f
8. $L^p(\mu)$ – the space of μ-measurable functions $f : X \to \mathbb{C}$ with $\|f\|_p < \infty$
9. $L^p(\mathbb{R}^k)$ – the space of Lebesgue measurable functions $f : \mathbb{R}^k \to \mathbb{C}$ with $\|f\|_p < \infty$
10. $|\lambda|$ – the total variation of a measure λ.
11. $\lambda \ll \mu$ – the measure λ is absolutely continuous with respect to the measure μ
12. $\lambda \perp \mu$ – the measures λ and μ are mutually singular
13. $\frac{d\lambda}{d\mu}$ – the Radon-Nikodym derivative of λ with respect to μ where $\lambda \ll \mu$
14. $\text{Lip } \alpha$ – the space of complex functions f on $[a, b]$ for which $\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\alpha} < \infty$; here $0 < \alpha \leq 1$
15. $f * g$ – the convolution of f and g: $(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy$
16. $\hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{-ixt} \, dm(x)$ – the Fourier transform
1. Suppose that \(f \in L^1(\mu) \). Prove that for each \(\epsilon > 0 \) there is \(\delta > 0 \) such that
\[
\int_E |f| \, d\mu < \epsilon
\]
whenever \(\mu(E) < \delta \).

2. Let \(X = [0,1] \). Prove that if \(f \) is a complex Lebesgue measurable on \(X \) with \(|f| \leq 1 \), then there exists a sequence \(\{g_n\} \) such that \(g_n \in C([0,1]) \), \(|g_n| \leq 1 \), and
\[
f(x) = \lim_{n \to \infty} g_n(x) \text{ a.e.}[m].
\]
[You may assume Lusin’s Theorem in your proof.]

3. If \(\mu(X) < \infty \) and \(0 < p < q \leq \infty \), prove that \(L^p(\mu) \supset L^q(\mu) \).

4. Let \(H \) be a Hilbert space with inner product \((\cdot, \cdot)\). Prove that if \(L \) is a continuous linear functional on \(H \), then there exists a unique \(y \in H \) such that
\[
Lx = (x, y) \text{ for all } x \in H.
\]

5. Let \(\{f_n\} \) be a sequence of continuous complex functions on a nonempty complete metric space \(X \) such that \(f(x) = \lim_{n \to \infty} f_n(x) \) exists for every \(x \in X \) (i.e. \(f_n \to f \) pointwise). Prove that there is a nonempty open set \(V \) and a number \(M < \infty \) such that
\[
|f_n(x)| < M \text{ for all } x \in V \text{ and for all } n = 1, 2, 3, \ldots.
\]

6. Suppose that \(\mu, \lambda, \lambda_1, \text{ and } \lambda_2 \) are measures on a \(\sigma \)-algebra \(M \) with \(\mu \) positive. Prove the following:
 (a) If \(\lambda_1 \perp \mu \) and \(\lambda_2 \perp \mu \), then \(\lambda_1 + \lambda_2 \perp \mu \);
 (b) If \(\lambda \ll \mu \), then \(|\lambda| \ll \mu \).

7. Let \(\mu \) be a complex Borel measure on \(\mathbb{R}^k \). Define the symmetric derivative, \(D\mu \), of \(\mu \) with respect to \(m \). Define a Lebesgue point of an \(L^1(\mathbb{R}^k) \) function. Prove that if \(\mu \ll m \) and \(f \) is the Radon-Nikodym derivative of \(\mu \) with respect to \(m \), then
\[
D\mu = f \text{ a.e.}[m], \quad \text{and} \quad \mu(E) = \int_E (D\mu) \, dm.
\]
[You may assume that almost every \(x \in \mathbb{R}^k \) is a Lebesgue point of an \(L^1(\mathbb{R}^k) \) function.]

8. If \(f \in \text{Lip} 1 \) on \([a, b] \), prove that \(f \) is absolutely continuous and that \(f' \in L^\infty \).

9. Suppose that \((X, \mathcal{G}, \mu) \) and \((Y, \mathcal{H}, \lambda) \) are \(\sigma \)-finite measure spaces, and suppose that \(\psi \) is a measure on \(\mathcal{G} \times \mathcal{H} \) such that
\[
\psi(A \times B) = \mu(A)\lambda(B)
\]
for all \(A \in \mathcal{G} \) and all \(B \in \mathcal{H} \). Prove that \(\psi(E) = (\mu \times \lambda)(E) \) for all \(E \in \mathcal{G} \times \mathcal{H} \). [You may assume that \(\mathcal{G} \times \mathcal{H} \) is the smallest monotone class which contains all elementary sets.]

10. Prove that if \(f \) and \(g \) are \(L^1(\mathbb{R}) \) and \(h = f * g \), then \(\hat{h}(t) = \hat{f}(t)\hat{g}(t) \). [You may assume that \(h \) is \(L^1(\mathbb{R}) \).]