INSTRUCTIONS. Each problem is worth 20 points. Do as many as you can. Calculators may NOT be used.

1. Show that every group of order 992(= 32 × 31) is solvable.

2. Find the Galois group of the splitting field of the polynomial \(x^3 - x - 1 \) if the group field is
 (a) \(\mathbb{R} \)
 (b) \(\mathbb{Q} \)
 (c) \(\mathbb{Z}/2\mathbb{Z} \)
 (d) \(\mathbb{Z}/5\mathbb{Z} \)
 (e) \(\mathbb{Z}/23\mathbb{Z} \)

3. List all abelian groups of order 200. Each group on your list should be displayed as a direct product of cyclic groups, and no two groups on the list should be isomorphic.

4. Are the \(4 \times 4 \) matrices
 \[
 A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -1 & 0 & 0 & 0 \\ -1 & 1 & 1 & -1 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix}
 \]
 similar? Explain your reasoning.

5. Determine all ideals of the ring \(\mathbb{Z}[x]/(2, x^3 + 1) \).

6. Fermat proved that the number \(2^{37} - 1 = 137438953471 \) was composite by finding a small prime factor \(p \). Suppose you know \(200 < p < 300 \). What is \(p \)?

7. Determine the minimal polynomial of the element \(\alpha = \sqrt{2} + \sqrt{5} \). (In other words, find \(\text{Irr}(\alpha, \mathbb{Q}) \).)

8. (a) Prove carefully that the rings \(\mathbb{Q}[x]/(x^2 - 2) \) and \(\mathbb{Q}[x]/(x^2 - 3) \) are not isomorphic.
 (b) Find an example of a commutative ring with unity \(R \) such that \(R[x]/(x^2 - 2) \) and \(R[x]/(x^2 - 3) \) are isomorphic. Justify your answer briefly.

9. Let \(\zeta \) be a primitive 13th root of unity. For each element \(\alpha \) listed below, find \([\mathbb{Q}(\alpha) : \mathbb{Q}] \).
 (a) \(a = \zeta \)
 (b) \(\alpha = \zeta + \zeta^{12} \)
 (c) \(\alpha = \zeta + \zeta^2 \)

10. An \(R \)-module \(M \) is said to be irreducible if \(M \neq 0 \) and \(M \) has no submodules except 0 and \(M \). Let \(V \) be a finite-dimensional vector space over a field \(k \), and let \(T : V \to V \) be a linear transformation. We know that \(T \) gives \(V \) the structure of a \(k[x] \)-module. Prove that \(V \) is irreducible as a \(k[x] \)-module if and only if the characteristic polynomial of \(T \) is irreducible in \(k[x] \).