Phd Exam Fall 2002

Work at least 7 problems from the real analysis section and at least 3 from the complex analysis section.

Real Analysis

1. Give an example of a measure space, $(\Omega, \mu, \mathcal{F})$, and a sequence of nonnegative measurable functions $\{f_n\}$ converging pointwise to a function f, such that inequality is obtained in Fatou’s lemma.

2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and suppose $f, g : \Omega \to [-\infty, \infty]$ are measurable. Prove the sets
 \[\{ \omega : f(\omega) < g(\omega) \} \quad \text{and} \quad \{ \omega : f(\omega) = g(\omega) \} \]
 are measurable. Note you can’t add or subtract functions which have values in this space and expect the operations to be continuous.

3. Let E be a countable subset of \mathbb{R}. Show $m(E) = 0$.

4. Given $1 > \varepsilon > 0$, show there exists an open set $E \subseteq [0, 1]$ dense in $[0, 1]$, and $m(E) = \varepsilon$. \textbf{Hint:} Recall the construction of the Cantor set. Next show there exists a strictly increasing function, f, which has the property that its derivative equals zero on a set of positive measure.

5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x) \equiv (1 + |x|^2)^k$. Find the values of k for which f is in $L^1(\mathbb{R}^n)$. \textbf{Hint:} Use polar coordinates.

6. Let B be a Borel set in \mathbb{R}^n and let v be a nonzero vector in \mathbb{R}^n. Suppose B has the following property. For each $x \in \mathbb{R}^n$, $m(\{t : x + tv \in B\}) = 0$. Then show $m_n(B) = 0$. Note the condition on B says roughly that B is thin in one direction.

7. If $f : \mathbb{R}^n \to [0, \infty]$ is Lebesgue measurable, show there exists $g : \mathbb{R}^n \to [0, \infty]$ such that $g = f$ a.e. and g is Borel measurable.

8. Suppose E is a Lebesgue measurable set which has positive measure and let B be an arbitrary open ball and let D be a set dense in \mathbb{R}^n. Establish the result of Smítal, which says that under these conditions, $\overline{m_n}((E + D) \cap B) = m_n(B)$ where here $\overline{m_n}$ denotes the outer measure determined by m_n. Is this also true for X, an arbitrary possibly non measurable set replacing E in which $\overline{m_n}(X) > 0$? \textbf{Hint:} Let x be a point of density of E and let D' denote those elements of D, d, such that $d + x \in B$. Thus D' is dense in B. Now use translation invariance of Lebesgue measure to verify there exists, $R > 0$ such that if $r < R$, we have the following holding for $d \in D'$ and $r_d < R$.
 \[\overline{m_n}((E + D) \cap B (x + d, r_d)) \geq m_n((E + d) \cap B (x + d, r_d)) \geq (1 - \varepsilon) m_n(B (x + d, r_d)). \]
 Argue the balls, $m_n(B (x + d, r_d))$, form a Vitali cover of B.

9. Let E be a Lebesgue measurable set in \mathbb{R}. Suppose $m(E) > 0$. Consider the set
 \[E - E = \{ x - y : x \in E, y \in E \}. \]
 Show that $E - E$ contains an interval. \textbf{Hint:} Let
 \[f(x) = \int \chi_E(t) \chi_E(x + t) dt. \]
 Note f is continuous at 0 and $f(0) > 0$. Remember continuity of translation in L^p.

10. Suppose for all \(f \in C_{c}(0, \infty) \), \(\|Af\|_{L_{p}(0,\infty)} \leq K\|f\|_{L_{p}(0,\infty)} \) where \(A \) is a linear operator defined on \(L_{0}^{p}(0,\infty) \). Does this inequality hold for all \(f \in L_{0}^{p}(0,\infty) \)? Explain why or why not. Here it is understood that the measure is ordinary Lebesgue measure.

11. Let \(f \in L_{1}^{1}(\mathbb{R}^{n}) \). Show \(Mf \), the Maximal function, is Borel measurable. Recall

\[
Mf(x) \equiv \sup_{r>0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(x)| \, dx.
\]

Complex Analysis

1. It is desired to find an analytic function, \(L(z) \) defined for all \(z \in \mathbb{C} \setminus \{0\} \) such that \(e^{L(z)} = z \). Is this possible? Explain why or why not.

2. If \(f \) is analytic, show that \(z \to f(\bar{z}) \) is also analytic.

3. Let \(f : U \to \mathbb{C} \) be analytic and \(f(z) = u(x,y) + iv(x,y) \). Show \(u, v \) and \(uv \) are all harmonic although it can happen that \(u^2 \) is not. Recall that a function, \(w \) is harmonic if \(w_{xx} + w_{yy} = 0 \).

4. Suppose that for some constants \(a, b \neq 0, a, b \in \mathbb{R} \), \(f(z+ib) = f(z) \) for all \(z \in \mathbb{C} \) and \(f(z+a) = f(z) \) for all \(z \in \mathbb{C} \). If \(f \) is analytic, show that \(f \) must be constant. Can you generalize this? **Hint:** This uses Liouville’s theorem.

5. Suppose \(f \) is an entire function and that \(f \) has the property that whenever we write \(f(z) \) as a power series expanded about a point \(w \), it follows that at least one of the coefficients in the power series must equal zero. Show that \(f \) must be a polynomial. **Hint:** Define a set, \(A_{n} \) to be the points, \(w \) such that if \(f(z) = \sum_{k=0}^{\infty} a_{k} (z-w)^{k} \), it follows \(a_{n} = 0 \). Thus \(A_{n} \) consists of the points where the power series of \(f \) centered at these points has the \(n^{th} \) coefficient equal to zero. Argue that some \(A_{n} \) is uncountable and therefore has a limit point.

6. We say a real valued function, \(u \) is subharmonic if \(u_{xx} + u_{yy} \geq 0 \). Show that if \(u \) is subharmonic on a bounded region, (open connected set) \(U \), and continuous on \(\overline{U} \) and \(u \leq m \) on \(\partial U \), then \(u \leq 0 \) on \(U \). State and prove a theorem about the uniqueness of the solutions to the equation, \(u_{xx} + u_{yy} = 0 \) in \(U \) and \(u = f \) on \(\partial U \). **Hint for the first part:** If not, \(u \) achieves its maximum at \((x_{0},y_{0}) \in U \). Let \(u(x_{0},y_{0}) > m + \delta \) where \(\delta > 0 \). Now consider \(u_{\varepsilon}(x,y) = \varepsilon x^{2} + u(x,y) \) where \(\varepsilon \) is small enough that \(0 < \varepsilon x^{2} < \delta \) for all \((x,y) \in U \). Show that \(u_{\varepsilon} \) also achieves its maximum at some point of \(U \) and therefore, \(u_{xx} + u_{yy} \leq 0 \) at that point implying that \(u_{xx} + u_{yy} \leq -\varepsilon \), a contradiction.

7. Use Rouche’s theorem to prove the fundamental theorem of algebra which says that if \(p(z) = z^{n} + a_{n-1}z^{n-1} + \cdots + a_{1}z + a_{0} \), then \(p \) has \(n \) zeros in \(\mathbb{C} \). **Hint:** Let \(q(z) = -z^{n} \) and let \(\gamma \) be a large circle, \(\gamma(t) = re^{it} \) for \(r \) sufficiently large.

8. Prove Liouville’s theorem from the Cauchy integral formula.