1. Let M be a smooth manifold, TM its tangent bundle, and $\pi: TM \to M$ the bundle map. Prove the extension lemma for vector fields:

Let Y be a vector field defined on a closed subset $A \subset M$ (so $Y: A \to TM$ is a map satisfying $\pi \circ Y = Id_A$ and for all $p \in A$, there exists a neighborhood V_p of p in M and a smooth vector field \tilde{Y} on V_p that agrees with Y on $V_p \cap A$). If U is an open set containing A, show there exists a smooth vector field \tilde{Y} on all of M such that $\tilde{Y}|_A = Y$ and the support of \tilde{Y} is contained in U.

2. Prove that for any 2–manifold M smoothly embedded in \mathbb{R}^6, there exists $v \in S^5$ such that orthogonal projection in the direction of v gives an injective map of M to a hyperplane.

3. Let M be a smooth manifold. Suppose $\gamma_0, \gamma_1: [0, 1] \to M$ are smooth curves that are path homotopic. For every closed 1–form ω on M, prove:

$$\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$$

4. Show the complement of a finite set of points in \mathbb{R}^n is simply connected if $n \geq 3$.

5. Define a Δ–complex structure on a Klein bottle K and use it to compute the homology groups of K with \mathbb{Z} and \mathbb{Z}_2 coefficients.

6. Let M be a closed, orientable n–manifold. Let F^i denote $H^i(M; \mathbb{Z})$ with torsion factored out.

(a) Prove that F^i is isomorphic to $\text{Hom}(H^{n-i}(M), \mathbb{Z})$. What is the isomorphism? That is, for $\alpha \in F^i$, the isomorphism takes α to a homomorphism sending $\phi \in H^{n-i}(M)$ to which element of \mathbb{Z}?

(b) If α generates a \mathbb{Z}–summand of $H^{n-i}(M; \mathbb{Z})$, prove there exists $\beta \in H^i(M; \mathbb{Z})$ so that the cup product $\alpha \cup \beta$ generates $H^n(M; \mathbb{Z})$.