Math 112, Winter 2011, Exam 2, SOLUTIONS

Multiple Choice.

1. Suppose \(F(x) = f(g(x)) \), where \(f(2) = 2 \), \(g(2) = 5 \), \(f'(2) = 4 \), \(f'(5) = 8 \) and \(g'(2) = 3 \). Find \(F'(2) \).

 a) 0 b) 12 c) 8
 d) 18 e) 24 f) None of the above.

 Answer: e

2. Find \(\frac{dy}{dx} \) for \(x^3 + y^2 = 2x \).

 a) \(\frac{2 + 3x^2}{2y} \) b) \(\frac{2 + 3x^2}{-2y} \) c) \(\frac{2 - 3x^2}{-2y} \)
 d) \(\frac{2 - 3x^2}{2y} \) e) None of the above

 Answer: d

3. Evaluate \(\lim_{\theta \to 0} \frac{\tan(\theta)}{\theta} \)

 a) 0 b) 1 c) \(\tan(\theta) \)
 d) \(\infty \) e) Does not exist f) None of the above.

 Answer: b

4. The position of a particle at time \(t \) is described by the equation \(s(t) = t^3 - 3t \), where \(s \) is in meters and \(t \) is in seconds. Find the velocity after 2 seconds.

 a) 2 m/s b) 12 m/s c) 9 m/s
 d) 3 m/s e) 18 m/s f) 1 m/s
 g) 0 m/s

 Answer: c

5. If each side of a square is increasing at a rate of 5 m/s, how fast is the area of the square increasing when a side is 3 m?

 a) 10 m^2/s b) 30 m^2/s c) 15 m^2/s
 d) 75 m^2/s e) 3 m^2/s f) 45 m^2/s
 g) Impossible to determine. h) None of the above.

 Answer: b
6. If \(f(x) = \log_5(x) \), evaluate \(f'(1) \).

 a) Does not exist.
 b) 1
 c) \(\ln(5) \)
 d) 0
 e) \(\frac{1}{5} \)
 f) \(\frac{1}{\ln(5)} \)
 g) None of the above.

 Answer: f

7. If \(f(x) = \sin(x) \), find the 33rd derivative of \(f(x) \).

 a) \(\sin(x) \)
 b) \(\cos(x) \)
 c) \(\sin^{33}(x) \)
 d) \(-\cos(x) \)
 e) \(-\sin(x) \)
 f) \(\tan(x) \)

 Answer: b

8. Find the derivative of \(f(x) = 3 \tanh(x) \).

 a) \(\frac{3 \cosh(x)}{\sinh(x)} \)
 b) \(-\frac{3 \cosh(x)}{\sinh(x)} \)
 c) \(-3 \text{sech}(x) \tanh(x) \)
 d) \(3 \text{sech}^2(x) \)
 e) \(-3 \text{csch}^2(x) \)
 f) None of the above.

 Answer: d

9. What is the derivative of \(\tan^{-1}(e^x) \)?

 a) \(-\csc^2(e^x)e^x \)
 b) \(\sec^2(e^x)e^x \)
 c) \(-(\tan(e^x))^{-2}e^x \)
 d) \(\frac{e^x}{1 + x^2} \)
 e) \(\frac{1}{\cos(1 + x^2)} \)
 f) \(\frac{e^x}{1 + e^{2x}} \)

 Answer: f

10. Suppose calculus-tonium has a half-life of 5 years and we start with a 250 gram sample. If \(A(t) = 250e^{kt} \) is the function that gives the remaining amount of mass, with time measured in years, then what is \(k \)?

 a) \(k = 50 \)
 b) \(k = \frac{1}{5} \)
 c) \(k = \ln\left(\frac{1}{5}\right) \)
 d) \(k = \frac{3}{4} \)
 e) \(k = \frac{\ln\left(\frac{1}{5}\right)}{5} \)
 f) \(k = 5 \)
 g) None of the above

 Answer: e
11. (8 points) Use a linear approximation to estimate $\sqrt{65}$.

Solution.

$f(x) = x^{\frac{1}{2}}, \ a = 64$

$f'(x) = \frac{1}{2x^{\frac{1}{2}}}$

$L(x) = f(a) + f'(a)(x - a) = 8 + \frac{1}{16}(x - 64)$

$\sqrt{65} = f(65) \approx L(65) = 8 + \frac{1}{16}(65 - 64) = 8 + \frac{1}{16}$

12. (8 points) If the area of a circle is increasing at a rate of 2 cm^2/s, at what rate is the radius increasing when the diameter is 4 cm?

Solution.

$A(t) = \pi(r(t))^2$

$A'(t) = 2\pi r(t)r'(t)$

Letting t_0 be the instant at which we are evaluating the rate of change, we have $r(t_0) = 2$, and

$A'(t_0) = 2\pi r(t_0)r'(t_0)$, and so

$2 = 2\pi 2r'(t_0)$, thus

$r'(t_0) = \frac{1}{2\pi} \frac{\text{cm}}{\text{s}}$

13. (6 points) Find the equation of the tangent line to the curve

$y = \frac{x - 2}{x + 2}$

at the point $(−1, −3)$.

Solution.

Letting $f(x) = \frac{x - 2}{x + 2}$, we have $f'(x) = \frac{x + 2 - (x - 2)}{(x + 2)^2} = \frac{4}{(x + 2)^2}$

Thus $m = f'(-1) = \frac{4}{((-1) + 2)^2} = 4$, so

$y - (-3) = 4(x - (-1))$

or $y = 4x + 1$

14. (6 points) Compute the derivative of $\arccos(x)$ using implicit differentiation.

$y = \arccos(x) \Rightarrow \cos(y) = x$

Solution.

Differentiating,

$-\sin(y)y' = 1$, so

$y' = -\frac{1}{\sin(y)} = -\frac{1}{\sqrt{1 - \cos^2(y)}} = -\frac{1}{\sqrt{1 - x^2}}$

(One can draw a triangle to directly conclude $y' = -\frac{1}{\sin(y)} = -\frac{1}{\sqrt{1 - x^2}}$)
15. (8 points) If $3x^2 + 17\sin(y) = 3 + xy$, compute $\frac{dy}{dx}$ at the point (1, 0).

Solution.

Differentiating implicitly, we get

$$6x + 17\cos(y)y' = xy' + y$$

and substituting the point (1, 0) we get

$$6 + 17\cos(0)y' = 1y' + 0,$$

and solving for $y' = \frac{dy}{dx}$ gives

$$y' = \frac{3}{8}$$

16. (8 points) Compute the derivatives of the following functions.

(a) $f(x) = 2x^2 - x + 1$

Solution.

$$f'(x) = \ln(2)2x^2 - x + 1(2x - 1)$$

(b) $g(x) = \ln(\sinh(x^2 + 1))$

Solution.

$$g'(x) = \frac{\cosh(x^2 + 1)(2x)}{\sinh(x^2 + 1)} = 2x \text{ coth}(x^2 + 1)$$

17. (8 points) Compute the derivative of $h(x) = x^x$. (Hint: Use logarithmic differentiation.)

Solution.

$$y = x^x, \text{ so } \ln(y) = \ln(x^x) = x \ln(x)$$

Differentiating both sides gives

$$\frac{y'}{y} = x \frac{1}{x} + \ln(x) = 1 + \ln(x)$$

and multiplying both sides by y gives

$$h'(x) = y' = y(1 + \ln(x)) = x^x(1 + \ln(x))$$

18. (8 points) Suppose that the world population is 1500 million people in the year 1900 and 1600 million people in 1910. Give an exponential function to model world population, letting t be measured in years since 1900 (so $t = 0$ is the year 1900), and letting population be measured in millions of people.

Solution.

$$P(t) = P(0)e^{kt} = 1500e^{kt}$$

We solve for k: $1600 = P(10) = 1500e^{k10}$, which means:

$$\frac{16}{15} = e^{k10}, \text{ or } \ln\left(\frac{16}{15}\right) = 10k, \text{ or } \frac{1}{10} \ln\left(\frac{16}{15}\right) = k,$$

and so we may write

$$P(t) = 1500e^{\frac{1}{10}\ln(16/15)t}$$

or simplifying,

$$P(t) = 1500\left(\frac{1600}{1500}\right)^{t/10}$$

END OF EXAM