1. If the columns of an orthogonal matrix are permuted, prove that the result is still an orthogonal matrix.

2. Are the matrices \[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
1 & 4 & 5 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{bmatrix}
\] similar? Explain.

3. Let \(U \) be a finite-dimensional vector space, and let \(V \) and \(W \) be subspaces of \(U \). Give a formula relating the dimensions of \(V \), \(W \), \(V + W \), and \(V \cap W \). Prove that your formula is correct. (Note: You may use without proof the vector space analogues of the homomorphism theorems from group theory.)

4. Show that there is no simple group of order 148.

5. Let \(H \) be a subgroup of finite index of an infinite group \(G \). Prove that \(G \) has a normal subgroup \(K \) of finite index in \(G \) with \(K \subset H \).

6. Determine the last 3 digits of the number \(13^{2011} \). Explain your method.

7. (a) Let \(A \) be a commutative ring with 1. An element \(a \in A \) is said to be nilpotent if \(a^n = 0 \) for some positive integer \(n \). Prove that the nilpotent elements of \(A \) form an ideal in \(A \).

(b) Does the result of part (a) still hold if the hypothesis of commutativity is dropped? Prove or disprove.

8. Let \(R \) be a commutative ring with 1. Prove that the principal ideal \((x)\) in the polynomial ring \(R[x] \) is a maximal ideal if and only if \(R \) is a field.

9. Prove that the Galois group of the splitting field of \(x^4 - 2 \) over \(\mathbb{Q} \) has order 8 and contains an element of order 4.

10. Let \(F \) be a field with 81 elements. Does the polynomial \(x^2 + 1 \) have a root in this field? (The polynomial should be considered as having coefficients in \(\mathbb{Z}/3\mathbb{Z} \).)