1. Give the definitions of both nilpotent groups and solvable groups. Prove that nilpotent groups are always solvable.
2. Prove that every non-trivial ideal in a ring with 1 is contained in a maximal ideal.
3. Compute the Galois group over \(\mathbb{Q} \) for the splitting field of the polynomial \(x^4 + 4 \).
4. Find the rational canonical form and Jordan canonical form for the matrix
\[
\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
5. Let \(\zeta_n \) be a primitive \(n \)th root of unity in \(\mathbb{C} \). Prove that \(\mathbb{Q}(\zeta_n)/\mathbb{Q} \) is an Abelian extension.
6. Let \(R \) be a ring with 1, and let \(A \) be a set. Prove that there is a free module \(F(A) \) on the set \(A \). In other words, there is a right \(R \)-module \(F(A) \), containing the set \(A \), satisfying the following universal property: if \(M \) is a right \(R \)-module, and \(\varphi : A \to M \) is a set map, then there is a unique right \(R \)-module homomorphism \(\Phi : F(A) \to M \) such that \(\Phi(a) = \varphi(a) \) for every \(a \in A \).
7. Let \(F \) be a field. Prove that the only ideals in \(\mathbb{M}_n(F) \) (the ring of \(n \times n \) matrices over \(F \)) are the zero ideal and the entire ring.
8. Prove Hilbert’s Basis Theorem: If \(R \) is a Noetherian ring then so is the polynomial ring \(R[x] \).
9. Classify all groups of order \(pq \) where \(p < q \) are primes.
10. Let \(G \) be a group of order 30. Prove that \(G \) has a normal subgroup isomorphic to \(\mathbb{Z}/15\mathbb{Z} \) (and in particular, is not simple).