Algebra PhD Qualifying Exam - Spring 2014

All rings have an identity element.

1. Let \(F_p \) be a field with \(p \) elements, \(p \) a prime. Let \(G = GL_2(F_p) \), the group invertible \(2 \times 2 \) matrices with entries in \(F_p \).

 (a) Find a Sylow \(p \)-subgroup of \(G \).

 (b) Find (with proof) the number of Sylow \(p \)-subgroups of \(G \).

2. Let \(H \) be a normal subgroup of prime order \(p \) in a finite group \(G \). Suppose \(p \) is the smallest prime which divides the order of \(G \). Prove that \(H \) is contained in \(Z(G) \), the center of \(G \).

3. Let \(k \) be a field. Let \(I \) be the \(n \times n \) identity matrix with entries in \(k \), and let \(M \) be an \(n \times n \) matrix with entries in \(k \). Let \(x \) be an indeterminate. Prove that \(\det(I + xM) \equiv 1 + x \text{tr}(M) \pmod{x^2} \). Here \(\text{tr}(M) \) is the trace of \(M \). Recall that \(\text{tr}(M) \) is the sum of the diagonal entries.

4. Determine (with proof) all ideals in the formal power series ring \(k[[t]] \), \(k \) a field.

5. Prove that the following polynomials are irreducible in \(\mathbb{Q}[x] \).

 (a) \(x^5 + 6x + 12 \);

 (b) \(x^3 + 6x^2 + 7 \).

6. Let \(R \) be a nonzero commutative ring. Prove or disprove: If \(R^m \) is isomorphic to \(R^n \) as an \(R \)-module, then \(m = n \).

7. Give all possible complex \(4 \times 4 \) matrices which can be Jordan canonical forms of \(4 \times 4 \) matrices with real entries.

8. Find the 20th cyclotomic polynomial \(\phi_{20}(x) \in \mathbb{Z}[x] \).

9. Let \(F/\mathbb{Q} \) be a field extension, not necessarily of finite degree. Here \(\mathbb{Q} \) is the field of rational numbers. Suppose that for all \(\alpha \in F \), \([\mathbb{Q}(\alpha) : \mathbb{Q}] \leq n \). Prove that \([F : \mathbb{Q}] \leq n \).

10. Let \(K \) be a splitting field over \(\mathbb{Q} \) of the polynomial \(x^5 - 2 \). Find all intermediate fields \(F \) between \(K \) and \(\mathbb{Q} \), and give generators over \(\mathbb{Q} \) for each.