Answer all questions. Partial credit will be given

(1) Let \(G \) be a finite group, \(H \) a subgroup of \(G \), and \(N \) a normal subgroup of \(G \). Show that if the order of \(H \) is relatively prime to the index of \(N \) in \(G \), then \(H \subseteq N \).

(2) Let \(G \) be an abelian group. Let \(K = \{ a \in G : a^2 = 1 \} \) and let \(H = \{ x^2 : x \in G \} \). Show that \(G/K \cong H \).

(3) Prove that there is no simple group of order 80.

(4) Give an example (with proof) of a Galois extension \(K \) of \(\mathbb{Q} \) such that \(\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/14\mathbb{Z} \).

(5) Let \(p \) be a prime that is congruent to 2 mod 5, and let \(F = \mathbb{F}_p \) be the finite field with \(p \) elements. Prove that the polynomial
\[
f(x) = x^4 + x^3 + x^2 + x + 1 \in F[x]
\]
is irreducible over \(F \).

(6) Denote by \(M_3(\mathbb{Q}) \) the set of \(3 \times 3 \) matrices with entries in \(\mathbb{Q} \). Let \(\varphi : M_3(\mathbb{Q}) \to M_3(\mathbb{Q}) \) be the map sending \(m \in M_3(\mathbb{Q}) \) to \(\varphi(m) = m^2 + 2m + 2 \). Show that \(\varphi(m) \neq 0 \) for all \(m \in M_3(\mathbb{Q}) \).

(7) Let \(k \) be a field, \(R \) a nonzero ring, and \(\varphi : k \to R \) a nonzero ring map. Show that \(\varphi \) is injective.

(8) Let \(R := R' \times R'' \) be a product of commutative rings with 1. Prove that \(R \) is a domain if and only if one of \(R' \) and \(R'' \) is the zero ring, and the other is a domain.

(9) Let \(R := R' \times R'' \) be a product of commutative rings with 1, and let \(I \subset R \) be an ideal. Show that \(I = I' \times I'' \) for some ideals \(I' \in R' \) and \(I'' \in R'' \), and that \(R/I = R'/I' \times R''/I'' \).

(10) Let \(R \) be a PID, and let \(x, y \in R \). Recall that for elements \(a, b \in R \), \(a \) is a factor of \(b \) if and only if there is some \(c \in R \) with \(b = ac \). Denote by \(\langle x \rangle \) and \(\langle y \rangle \) the ideals of \(R \) generated by \(x \) and \(y \), respectively. Prove that \(x \) and \(y \) share no nonunit factors if and only if \(\langle x \rangle \) and \(\langle y \rangle \) are comaximal in \(R \).