MASTER'S EXAM, ANALYSIS, AUGUST 2010

- 1. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers converging to 0, prove that the series $\sum_{n=1}^{\infty} (-1)^n a_n$ converges, or give a specific counterexample.
- 2. Prove directly (without using any theorem about absolute convergence) that every rearrangement of the series $1 + 1/2 + 1/4 + 1/8 + \cdots$ converges to 2.
- 3. Show that the function $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.
- 4. Prove the Intermediate Value Theorem: If f is a real-valued continuous function on the interval [a, b] with f(a) < 0 < f(b), then there exists $c \in (a, b)$ such that f(c) = 0.
- 5. State and prove the Mean-Value Theorem for functions of a single variable.
- 6. Let $B(r, \mathbf{0}) \subset \mathbb{R}^n$ denote the open ball of radius r > 0, centered at $\mathbf{0}$. Let $f: B(r, \mathbf{0}) \to \mathbb{R}$ and suppose there exists $\alpha > 1$ such that

$$|f(\boldsymbol{x})| \le ||\boldsymbol{x}||^{\alpha} \quad \forall \boldsymbol{x} \in B(r, \boldsymbol{0}).$$

Prove that f is differentiable at 0. What happens to this result when $\alpha = 1$?

7. The colatitude of a point (x, y, z) on the hemisphere

$$H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \ge 0\}$$

is the angle between the vector (x, y, z) and the vector (0, 0, 1). What is the average colatitude of a point on H (with respect to surface area)?

8. Let $H = [a, b] \times [c, d]$ and suppose that $f : H \to \mathbb{R}$ is continuous and that $g : [a, b] \to \mathbb{R}$ is Riemann integrable. Prove that

$$F(y) = \int_{a}^{b} g(x)f(x,y)dx$$

is continuous on [c, d].

- 9. Prove that for any polynomial $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ we have $\sup_{|z|=1} |P(z)| \ge 1$. Hint: Consider Q(0), where $Q(z) = z^n P(z^{-1})$.
- 10. Prove: If f(z) and |f(z)| are both analytic on a connected domain D, then f is constant in D.