Ph.D. QUALIFIER EXAMINATION: ANALYSIS
Fall 2011

Instructions: Answer exactly 6 of the 10 questions given. If you answer more than 6 questions, your grade will be determined by the first 6 questions that you answered.

Some Notation.

1. \(\mathbb{R}^k \) – Euclidean \(k \)-dimensional space
2. \(\mathbb{C} \) – the complex numbers
3. \((X, \mathcal{M}, \mu)\) – a measure space where \(X \) is a set, \(\mathcal{M} \) is a \(\sigma \)-algebra of subsets of \(X \), and \(\mu \) is a measure on \(\mathcal{M} \)
4. \(a.e. [\mu] \) – almost every with respect to the measure \(\mu \)
5. \(m \) – Lebesgue measure on \(\mathbb{R}^k \)
6. \(\|f\|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p} \) – the \(L^p \)-norm of a \(\mu \)-measurable function \(f : X \to \mathbb{C} \)
7. \(\|f\|_\infty \) – the essential supremum of \(f \)
8. \(p, q \) – conjugate exponents where \(\frac{1}{p} + \frac{1}{q} = 1 \)
9. \(L^p(\mu) \) – the space of \(\mu \)-measurable functions \(f : X \to \mathbb{C} \) with \(\|f\|_p < \infty \)
10. \(L^p(\mathbb{R}^k) \) – the space of Lebesgue measurable functions \(f : \mathbb{R}^k \to \mathbb{C} \) with \(\|f\|_p < \infty \)
11. \(\|\Gamma\| = \sup\{\|\Gamma x\| : x \in X, \|x\| \leq 1\} \) – operator norm of a linear transformation \(\Gamma : X \to Y \) where \(X \) and \(Y \) are normed linear spaces
12. \(|\lambda| \) – the total variation of a measure \(\lambda \)
13. \(\lambda \ll \mu \) – the measure \(\lambda \) is absolutely continuous with respect to the measure \(\mu \)
14. \(\lambda \perp \mu \) – the measures \(\lambda \) and \(\mu \) are mutually singular
15. \(\frac{d\lambda}{d\mu} \) – the Radon-Nikodym derivative of \(\lambda \) with respect to \(\mu \) where \(\lambda \ll \mu \)
16. \(\text{Lip } \alpha \) – the space of complex functions \(f \) on \([a, b]\) for which \(\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\alpha} < \infty \); here \(0 < \alpha \leq 1 \)
17. \(f \ast g \) – the convolution of \(f \) and \(g \): \((f \ast g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-y)g(y) \, dy \)
18. \(C_0(\mathbb{R}^k) \) – the continuous complex functions on \(\mathbb{R}^k \) which vanish at infinity
19. \(\hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ixt} \, dx \) – the Fourier transform
Questions

1. State and prove Lebesgue’s Dominated Convergence Theorem. [You may assume Fatou’s Lemma in your proof.]

2. Let \(X \) be a locally compact Hausdorff space in which every open set is \(\sigma \)-compact. If \(\lambda \) is a positive Borel measure on \(X \) such that \(\lambda(K) < \infty \) for every compact subset \(K \) of \(X \), then \(\lambda \) is regular. [Hint: there is a regular positive Borel measure \(\mu \) on \(X \) such that \(\int_X f \, d\lambda = \int_X f \, d\mu \) for all continuous \(f \) on \(X \) with compact support; show that \(\lambda = \mu \). You may assume Urysohn’s Lemma and the Monotone Convergence Theorem in your proof.]

3. For a positive measure \(\mu \) prove that if \(r < p < s \), then \(\| f \|_p \leq \max\{\| f \|_r, \| f \|_s \} \) for every complex measurable function \(f \). [Hint: for \(\phi(p) = \| f \|_p \), the function \(\log \phi(p) \) is convex in the interior of \(\{ p : \phi(p) < \infty \} \).]

4. Prove that if \(A \subset [0, 2\pi] \) is Lebesgue measurable, then
\[
\lim_{n \to \infty} \int_A \cos nx \, dx = \lim_{n \to \infty} \int_A \sin nx \, dx = 0.
\]

5. Let \(X \) be a normed linear space, and \(X^* \) its dual space equipped with the norm \(\| f \| = \sup\{|f(x)| : \| x \| \leq 1\} \). Prove that \(X^* \) is a Banach space.

6. Let \(L^\infty = L^\infty(m) \) where \(m \) is Lebesgue measure on \(I = [0, 1] \). Prove that there is a bounded linear functional \(\Lambda \neq 0 \) on \(L^\infty \) that is 0 on \(C(I) \) (the space of continuous functions defined on \(I \)).

7. Prove that if \(f \in \text{Lip} 1 \) on \([a, b]\), then \(f \) is absolutely continuous on \([a, b]\) and \(f' \in L^\infty \).

8. For \(f \in L^1(\mathbb{R}) \) and \(g \in L^p(\mathbb{R}) \) with \(1 < p < \infty \), prove that \(f \ast g \) exists a.e., that \(f \ast g \in L^p(\mathbb{R}) \), and that \(\| f \ast g \|_p \leq \| f \|_1 \| g \|_p \). [You may assume Fubini’s Theorem in your proof.]

9. For a positive integer \(n \), find (with proof) the Fourier transform of \(\chi_{[-n,n]} \ast \chi_{[-1,1]} \), where \(\chi_{[a,b]} \) is the characteristic function of \([a,b]\).

10. Suppose \(f \) is an entire function, and that in every power series
\[
f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n,
\]
at least one coefficient is 0. Prove that \(f \) is a polynomial.