JANUARY 2014 ANALYSIS PH.D. QUALIFYING EXAMINATION

Instructions:

- All vector spaces on this exam are real.
- All measures on this exam are non-negative $(i.e., \mu(A) \in [0, \infty]$ for every measure μ , and for every A in the domain of μ).
- Full credit on a problem will only be awarded for a **complete** solution.
- Submit solutions to no more than 7 of the 10 problems. (If you submit more than 7 solutions, your score will be based only on the first 7 solutions you submit.)

- 1. Let (X, \mathcal{A}, μ) be a measure space. Prove that μ is σ -finite if and only if there is a μ -integrable function $f: X \to (0, \infty)$.
- 2. Let (X, \mathcal{A}, μ) be a measure space. Prove that if $f_n \to 0$ in $L^1(\mu)$ then $f_n \to 0$ in measure; give a specific counterexample (*i.e.*, choose X, \mathcal{A} , μ , and f_n) to show that the converse doesn't hold.
- 3. Prove that no σ -algebra is countably infinite.
- 4. Prove that if $f : [0,1] \to \mathbb{R}$ has bounded variation, then there are nondecreasing functions $f_1 : [0,1] \to \mathbb{R}$ and $f_2 : [0,1] \to \mathbb{R}$ such that $f = f_1 f_2$.
- 5. Let (X, \mathcal{A}, μ) be a measure space, with $\mu(X) < \infty$. For every $B \subseteq X$, define

$$\nu(B) := \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathcal{A} \text{ and } B \subseteq \bigcup_{i=1}^{\infty} A_i \right\}.$$

Prove that $\mu(X) \leq \nu(B) + \nu(X \setminus B)$ for every $B \subseteq X$.

- 6. Prove that if V is a finite-dimensional vector space then all norms on V are equivalent.
- 7. Let $(V, \|\cdot\|)$ be a normed vector space, let V^* be the set of bounded linear real-valued functions defined on V, and let $\|\cdot\|_*$ be the operator norm defined by

$$||f||_* := \sup\{|f(v)| : ||v|| \le 1\}.$$

Prove that $(V^*, \|\cdot\|_*)$ is complete.

- 8. Define what a Hamel basis is and what a Schauder basis is. Is every Hamel basis a Schauder basis? Is every Schauder basis a Hamel basis? Explain.
- 9. Let H be a Hilbert space, let $T : H \to H$ be linear and bounded, and let $T^* : H \to H$ be the adjoint of T.
 - (a) Prove that the operator norm of T^* is no bigger than the operator norm of T.
 - (b) Prove that if the operator norm of T is 1, and $h_0 \in H$ satisfies $T(h_0) = h_0$, then $T^*(h_0) = h_0$.
- 10. Let $(V, \|\cdot\|)$ be a normed vector space. We say a series $\sum_i v_i$ in V is absolutely convergent if $\sum_i \|v_i\|$ is convergent. Prove that $(V, \|\cdot\|)$ is complete if and only if every absoutely convergent series in V is convergent.