Ph.D. QUALIFIER EXAMINATION: ANALYSIS
Winter 2011

Instructions: Answer exactly 6 of the 10 questions given. If you answer more than 6 questions, your grade will be determined by the first 6 questions that you answered.

Some Notation.
1. \(\mathbb{R}^k \) – Euclidean \(k \)-dimensional space
2. \(\mathbb{C} \) – the complex numbers
3. \((X, \mathcal{M}, \mu)\) – a measure space where \(X \) is a set, \(\mathcal{M} \) is a \(\sigma \)-algebra of subsets of \(X \), and \(\mu \) is a measure on \(\mathcal{M} \)
4. a.e.\([\mu]\) – almost every with respect to the measure \(\mu \)
5. \(m \) – Lebesgue measure on \(\mathbb{R}^k \)
6. \(\|f\|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p} \) – the \(L^p \)-norm of a \(\mu \)-measurable function \(f : X \to \mathbb{C} \)
7. \(\|f\|_\infty \) – the essential supremum of \(f \)
8. \(p, q \) – conjugate exponents where \(\frac{1}{p} + \frac{1}{q} = 1 \)
9. \(L^p(\mu) \) – the space of \(\mu \)-measurable functions \(f : X \to \mathbb{C} \) with \(\|f\|_p < \infty \)
10. \(L^p(\mathbb{R}^k) \) – the space of Lebesgue measurable functions \(f : \mathbb{R}^k \to \mathbb{C} \) with \(\|f\|_p < \infty \)
11. \(\|\Gamma\| = \sup\{\|\Gamma x\| : x \in X, \|x\| \leq 1\} \) – operator norm of a linear transformation \(\Gamma : X \to Y \) where \(X \) and \(Y \) are normed linear spaces
12. \(|\lambda|\) – the total variation of a measure \(\lambda \).
13. \(\lambda \ll \mu \) – the measure \(\lambda \) is absolutely continuous with respect to the measure \(\mu \)
14. \(\lambda \perp \mu \) – the measures \(\lambda \) and \(\mu \) are mutually singular
15. \(\frac{d\lambda}{d\mu} \) – the Radon-Nikodym derivative of \(\lambda \) with respect to \(\mu \) where \(\lambda \ll \mu \)
16. \(\text{Lip } \alpha \) – the space of complex functions \(f \) on \([a, b]\) for which \(\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\alpha} < \infty \); here \(0 < \alpha \leq 1 \)
17. \(f \ast g \) – the convolution of \(f \) and \(g \): \((f \ast g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-y)g(y) \, dy \)
18. \(C_0(\mathbb{R}^k) \) – the continuous complex functions on \(\mathbb{R}^k \) which vanish at infinity
19. \(\hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ixt} \, dx \) – the Fourier transform
Questions

1. State and prove Lebesgue’s Dominated Convergence Theorem. [You may assume Fatou’s Lemma in your proof.]

2. Prove that every outer regular Borel measure on a locally compact, \(\sigma\)-compact Hausdorff space \(X\) is inner regular.

3. Prove for every positive measure \(\mu\) and every \(1 \leq p \leq \infty\), that \(L^p(\mu)\) is a complete metric space.

4. Prove that the dual of \(L^2(\mu)\) is \(L^2(\mu)\).

5. Construct a bounded linear functional on some subspace of \(L^1(\mu)\) which has at least two distinct norm-preserving extensions to \(L^1(\mu)\).

6. State and proof the Hahn Decomposition Theorem. [You may assume the Radon-Nikodym Theorem in your proof.]

7. Let \(f \in L^1(\mathbb{R}^k)\). Let \(B_r(x)\) be the ball of radius \(r \geq 0\) and center \(x \in \mathbb{R}^k\). Prove that for a.e.\([m]\)-\(x \in \mathbb{R}^k\), there holds \[
\lim_{r \to 0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(x) - f(y)| \, dm(y) = 0.
\]
[You may assume the weak \(L^1\) estimate on the maximal function.]

8. Prove that if \(f, g \in L^1(\mathbb{R})\), then \(h = f \ast g\) is \(L^1(\mathbb{R})\) and \(\|h\|_1 \leq \|f\|_1 \|g\|_1\). [You may assume Fubini’s Theorem in your proof.]

9. Let \(g\) be the characteristic function on \([-2, 2]\) and \(h\) the characteristic function on \([-1, 1]\). Find a function \(f \in L^1(\mathbb{R})\) for which \(g \ast h\) is the Fourier transform of \(f\).

10. Let \(\alpha\) be a complex number such that \(|\alpha| \neq 1\). Use the method of residues to compute \[
\int_0^{2\pi} \frac{1}{1 - 2\alpha \cos \theta + \alpha^2} \, d\theta.
\]