Ph.D. QUALIFIER EXAMINATION: ANALYSIS Winter 2016

Instructions: Answer *exactly* 6 of the 10 questions given. If you answer more than 6 questions, your grade will be determined by the first 6 questions that you answered. To pass this exam, you need to get 35 out of 60. Each question is graded out of 10.

Some Notation.

- 1. \mathbb{R}^k Euclidean k-dimensional space
- 2. \mathbb{C} the complex numbers
- 3. \mathcal{B}_X the Borel σ -algebra in X
- 4. (X, \mathcal{M}, μ) a measure space where X is a set, \mathcal{M} is a σ -algebra of subsets of X, and μ is a measure on \mathcal{M}
- 5. a.e. [μ] – almost every with respect to the measure μ
- 6. m Lebesgue measure on \mathbb{R}^k
- 7. $||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$ the L^p -norm of a μ -measurable function $f: X \to \mathbb{C}$
- 8. $||f||_{\infty}$ the essential supremum of f
- 9. p, q conjugate exponents where $\frac{1}{p} + \frac{1}{q} = 1$
- 10. $L^p(\mu)$ the space of μ -measurable functions $f: X \to \mathbb{C}$ with $||f||_p < \infty$
- 11. $L^p(\mathbb{R}^k)$ the space of Lebesgue measurable functions $f: \mathbb{R}^k \to \mathbb{C}$ with $||f||_p < \infty$
- 12. $\|\Gamma\| = \sup\{\|\Gamma x\| : x \in X, \|x\| \le 1\}$ operator norm of a linear transformation $\Gamma \colon X \to Y$ where X and Y are normed linear spaces
- 13. $|\lambda|$ the total variation of a measure λ .
- 14. $\lambda \ll \mu$ the measure λ is absolutely continuous with respect to the measure μ
- 15. $\lambda \perp \mu$ the measures λ and μ are mutually singular
- 16. $\frac{d\lambda}{d\mu}$ the Radon-Nikodym derivative of λ with respect to μ where $\lambda \ll \mu$
- 17. Lip α the space of complex functions f on [a,b] for which $\sup_{x\neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} < \infty$; here $0 < \alpha \le 1$
- 18. f * g the convolution of f and g: $(f * g)(x) = \int_{-\infty}^{\infty} f(x y)g(y) dm(y)$
- 19. $C_c(X)$ the continuous complex functions on X with compact support
- 20. $C_0(X)$ the continuous complex functions on a LCH space X which vanish at infinity
- 21. $\hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{-ixt} dm(x)$ the Fourier transform

Questions

- 1. State and prove Lebesgue's Dominated Convergence Theorem.
- 2. Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions defined on a measurable set $E \subset X$ with $\mu(E) < \infty$, and $f_k \to f$ a.e. Prove that, for each $\epsilon > 0$, there is a set A_{ϵ} with $A_{\epsilon} \subset E$, $\mu(E A_{\epsilon}) < \epsilon$ such that $f_k \to f$ uniformly on A_{ϵ} .
- 3. Suppose f is a complex measurable function on X, μ is a positive measure on X, and

$$\varphi(p) = \int_X |f|^p d\mu = ||f||_p^p \qquad (0$$

If $r , prove that <math>||f||_p \le \max(||f||_r, ||f||_s)$.

- 4. Let ℓ be a continuous linear functional on a Hilbert space H. Prove that there exists a unique element $g \in H$ such that $\ell(f) = \langle f, g \rangle_H$ for all $f \in H$, and that $\|\ell\| = \|g\|_H$.
- 5. Let μ be a positive measure on X with $\mu(X) < \infty$, and $1 \le p < \infty$.
 - (a) If $f_n \in L^p(\mu)$ and $||f_n f||_p \to 0$, prove that $f_n \to f$ in measure.
 - (b) Conversely if $f_n \to f$ in measure, prove that $\{f_n\}$ has a subsequence which converges to f a.e. $[\mu]$.
- 6. Let X, Y be normed linear spaces. The set of all bounded linear operators from X to Y is denoted by L(X, Y) endowed with the operator norm $||A|| = \sup_{x \in X, x \neq 0} \frac{||Ax||_Y}{||x||_X}$. If Y is a Banach space, prove that L(X, Y) is a Banach space.
- 7. If the functions $f_n(z)$ are analytic and $\neq 0$ in a region Ω , and if $f_n(z)$ converges to f(z), uniformly on every compact subset of Ω , prove that f(z) is either identically zero or never equal to zero in Ω .
- 8. If f(z) is analytic and $\operatorname{Im} f(z) \geq 0$ for $\operatorname{Im} z > 0$, show that

$$\left| \frac{f(z) - f(z_0)}{f(z) - \overline{f(z_0)}} \right| \le \left| \frac{z - z_0}{z - \overline{z_0}} \right|.$$

9. Compute

$$\int_0^\infty \frac{\log(1+x^2)}{x^{1+\alpha}} \, dx, \quad 0 < \alpha < 2.$$

10. Let f be analytic in a region Ω . If a is a point in Ω such that $f^{(n)}(a) = 0$ for $n = 0, 1, 2, \ldots$, prove that f(z) = 0 for all $z \in \Omega$.

2