1. Let A be a finite abelian group of order n. Let p be a prime dividing n. Show that there is a subgroup H of A of order p.

2. How many elements are conjugate to $(1, 2)(3, 4, 5, 6)(7, 8)$ in the symmetric group S_8?

3. Let \mathbb{Z} be the group of integers (with additive notation) and put $G = \mathbb{Z} \times \mathbb{Z}$. Let H be the subset of all elements of the form

 $$(3n + 2m, 4n + 5m), \text{ where } n, m \in \mathbb{Z}.$$

 Show that H is a subgroup of G and that $G/H \cong \mathbb{Z}/7\mathbb{Z}$.

4. If P is a prime ideal in a commutative ring R, prove that the set $P \times P$ is an ideal in $R \times R$, but not a prime ideal.

5. If F is a field, prove that $F[x]$ is an integral domain.

6. Prove that $x^4 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$.

7. Is the matrix $A = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{bmatrix}$ diagonalizable? If so, diagonalize this matrix. If not, explain why not.

8. What is the dimension of the subspace H of all 3×3 symmetric matrices with real entries which have diagonal entries all equal to zero? Give a basis for H.

9. Prove or find a counterexample to the following statement.

 Matrices with equivalent characteristic polynomials are always similar.

Now answer only one of:

10. Prove that the roots of $x^5 - 6x + 3 = 0$ cannot be written as radical expressions over the rationals.

11. Let V be a finite-dimensional $\mathbb{C}G$-module, where G is a finite group. If U is a submodule of V, show that there is a submodule W of V such that $V = U \oplus W$.