Master’s Analysis Exam – September 2016

4 Hours. No notes, textbooks, or calculator

If asked to show something, you must derive it from simpler results. For instance, you may not prove the intermediate value theorem by quoting a theorem about the continuous image of a connected metric space. REMEMBER TO WRITE YOUR ANSWERS ON ONE SIDE OF THE PAPER ONLY.

1. Let \(x_n := \frac{1}{1^2} + \frac{1}{2^2} + \cdots + \frac{1}{n^2} \) for each \(n \in \mathbb{N} \). Prove that \((x_n) \) is increasing and bounded, and hence converges.

2. For each \(n \in \mathbb{N} \) let \(A_n \) be a countable subset of \(\mathbb{R} \). Prove that \(\bigcup_{n=1}^{\infty} A_n \) is countable.

3. Suppose that \((X,d) \) is a metric space that contains the point \(p \) and \(r \) is a positive number. Prove that the set \(\{ q \in X | d(p,q) \leq r \} \) is closed in \(X \).

4. Prove the existence of an open cover of \(\mathbb{R}^n \) that has no finite subcover.

5. For a pair of numbers \(a \) and \(b \), consider the system of nonlinear equations
 \[
 \begin{align*}
 x + x^2 \cos y + xy e^{x^3 y^2} &= a, \\
 y + x^5 + y^3 - x^2 \cos(xy) &= b.
 \end{align*}
 \]

 Use the inverse function theorem to show that there is some positive number \(r \) such that if \(a^2 + b^2 < r^2 \), then this system of equations has at least one solution.

6. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable. Prove that the gradient \(\nabla f(x) \) is the direction along which \(f \) is increasing the fastest.

7. Let \(\{ f_n \} \) be a sequence of real-valued Riemann-integrable functions on the same compact interval \([a,b]\). Prove that if \(\{ f_n \} \) converges uniformly to a real-valued Riemann-integrable function \(f \) on \([a,b]\), then
 \[
 \int_a^b f_n \to \int_a^b f.
 \]

8. Evaluate
 \[
 \int_0^a \int_0^{(a^2-x^2)^{1/2}} (a^2 - y^2)^{1/2} dy \, dx.
 \]

9. Give two Laurent series expansions in powers of \(z \) for the function
 \[
 f(z) = \frac{1}{z^2(1-z)},
 \]
 and specify the regions in which those expansions are valid.

10. For a nonempty open set \(A \) in \(\mathbb{C} \), prove that if \(f : A \to \mathbb{C} \) is analytic and \(f' \) is continuous on and inside a simple closed curve \(\gamma \) lying inside \(A \), then
 \[
 \int_{\gamma} f = 0.
 \]