DO NOT WRITE ON THIS EXAM

MATH 110 - College Algebra

EXAM 4 December 5-11, 2018

Instructors: Robertson, McGhie, Lewis, Riddle, Woller

Instructions:

- Calculators and notes are not allowed.
- Do not write on this exam.
- Mark the correct answer on the bubble sheet provided.
- There is only one correct answer for each multiple choice question.
- There is no time limit.
- Please do not talk about the test with other students until after December 13.

(1) Find the equation of the ellipse with vertices: (2,7) and (2,1) and one of the foci at (2,6)

(a)
$$\frac{(x-2)^2}{5} + \frac{(y-4)^2}{9} = 1$$

(d)
$$\frac{(x-4)^2}{5} + \frac{(y-2)^2}{9} = 1$$

(b)
$$\frac{(x-2)^2}{9} + \frac{(y-4)^2}{5} = 1$$

(e)
$$\frac{(x-1)^2}{2} + \frac{(y-4)^2}{9} = 1$$

(c)
$$\frac{(x-4)^2}{9} + \frac{(y-2)^2}{5} = 1$$

(f)
$$\frac{(x-5)^2}{2} + \frac{(y-9)^2}{4} = 1$$

(2) What is the center of the following ellipse: $2x^2 + 4x + 3y^2 - 18y + 12 = 0$?

1

- (a) (1,3)
- (b) (3,1)
- (c) (-3, -1)
- (d) (-1, -3)
- (e) (-1,3)
- (f) (-3,1)

- (3) What type of conic section is the following equation: $5x^2 + 10x 7y^2 + 42y + 17 = 0$
 - (a) Circle
 - (b) Hyperbola
 - (c) Ellipse
 - (d) Parabola
 - (e) It is not a conic

- (4) What are the oblique asymtotes of the following hyperbola $\frac{y^2}{16} \frac{x^2}{4} = 1$?
 - (a) $y = \pm 2x$
 - (b) $y = \pm \frac{1}{2}x$
 - (c) $y = \pm 4x$
 - (d) $y = \pm \frac{1}{4}x$
 - (e) $y = \pm 16x$
 - (f) $y = \pm \frac{1}{16}x$

- (5) How many solutions does the following system have: $\begin{cases} 3x + 5y = 10 \\ -6x 10y = 3 \end{cases}$?
 - (a) None
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) 4
 - (f) ∞

- (6) Solve the following system for z: $\begin{cases} 3x + 3y + 2z = 4 \\ x y z = 0 \\ 2y 3z = -8 \end{cases}$
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) 2
 - (e) 3
 - (f) 4
- (7) How many solutions does the following system have: $\begin{cases} x^2 + y^2 = 9 \\ x^2 + y = 7 \end{cases}$?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) 4
 - (f) ∞
- (8) Solve the following system of equations: $\begin{cases} \frac{1}{x} + \frac{1}{y} = 8 \\ \frac{3}{x} \frac{5}{y} = 0 \end{cases}$. What is x + y?
 - (a) $\frac{8}{3}$

 - (b) $\frac{8}{5}$ (c) $\frac{8}{15}$ (d) $\frac{2}{3}$ (e) $\frac{2}{5}$ (f) $\frac{2}{15}$

(9) Which of the following is a correct form for a Partial Fraction Decomposition of

$$\frac{x^3 - 5x}{(x^2 + 2x - 3)(x^2 + 1)^2}?$$

(a)
$$\frac{A}{x+3} + \frac{B}{x-1} + \frac{Cx+D}{x^2+1}$$

(b)
$$\frac{A}{x+3} + \frac{B}{x-1} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{(x^2+1)^2}$$

(c)
$$\frac{A}{x+3} + \frac{B}{x-1} + \frac{Cx+D}{(x^2+1)^2}$$

(d)
$$\frac{A}{x+3} + \frac{B}{x-1} + \frac{C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$

(e)
$$\frac{A}{x+3} + \frac{B}{x-1} + \frac{C}{x^2+1} + \frac{D}{(x^2+1)^2}$$

(f)
$$\frac{Ax+B}{x+3} + \frac{Cx+D}{x-1} + \frac{Ex+F}{x^2+1} + \frac{Gx+H}{(x^2+1)^2}$$

(10) If $\frac{A}{x} + \frac{Bx + C}{x^2 + 4}$ is a correct form for a Partial Fraction Decomposition of $\frac{1}{x(x^2 + 4)}$, what are A, B and C?

(a)
$$A = \frac{1}{4}$$
, $B = -\frac{1}{4}$, $C = 0$

(b)
$$A = \frac{1}{3}$$
, $B = -\frac{1}{3}$, $C = 1$

(c)
$$A = \frac{1}{2}$$
, $B = -\frac{1}{2}$, $C = -1$

(d)
$$A = -\frac{1}{4}$$
, $B = \frac{1}{4}$, $C = 1$

(e)
$$A = -\frac{1}{3}$$
, $B = \frac{1}{3}$, $C = 0$

(f)
$$A = -\frac{1}{2}$$
, $B = \frac{1}{2}$, $C = -1$

(11) If $n(A \cup B) = 20$, n(A) = 10, and n(B) = 15, what is $n(A \cap B)$?

(a)
$$-15$$

(c)
$$-10$$

(e)
$$-5$$

(12) If $A = \{1, 3, 5, 7\}$, $B = \{2, 3, 4, 5\}$, and $C = \{2, 4, 6, 8\}$, what is $(A \cup B) \cap C$?

- (a) $\{1, 3, 5, 7\}$
- (b) $\{2, 3, 4, 5\}$
- (c) $\{2,4,6,8\}$
- (d) $\{2,4\}$
- (e) $\{2, 3, 4, 5, 6, 8\}$
- (f) Ø

(13) If $a_n = \left(\frac{3}{2}\right)^n$, what is a_4 ?

- (a) $\frac{27}{16}$ (b) $\frac{81}{16}$ (c) $\frac{81}{8}$ (d) $\frac{27}{8}$ (e) $\frac{3}{2}$ (f) $\frac{243}{32}$

(14) Find the 101st term for the following sequence: -1, 3, 7, 11, ...?

- (a) 417
- (b) 413
- (c) 409
- (d) 407
- (e) 403
- (f) 399

(15) Find the following sum:

$$\sum_{k=1}^{20} (2k+7)$$

- (a) 360
- (b) 460
- (c) 560
- (d) 660
- (e) 760
- (f) 860

(16) Find the following sum:

$$\sum_{k=1}^{10} \left(\frac{3}{5}\right)^k$$

- (a) $\frac{3}{2} \left(1 \left(\frac{3}{5} \right)^9 \right)$
- (b) $\frac{5}{3} \left(1 \left(\frac{3}{5} \right)^9 \right)$
- (c) $\frac{3}{5} \left(1 \left(\frac{3}{5} \right)^9 \right)$
- (d) $\frac{3}{2} \left(1 \left(\frac{3}{5} \right)^{10} \right)$
- (e) $\frac{5}{3} \left(1 \left(\frac{3}{5} \right)^{10} \right)$
- (f) $\frac{3}{5} \left(1 \left(\frac{3}{5} \right)^{10} \right)$

(17) Find the following infinite sum:

$$\sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k$$

- (a) -1
- (b) $-\frac{1}{2}$
- (c) 0
- (d) $\frac{1}{2}$
- (e) 1
- (f) $\frac{3}{2}$

(18) What is $\frac{13!}{11!2!}$?

- (a) 76
- (b) 77
- (c) 78
- (d) 79
- (e) 80
- (f) 81

(19) How many subsets of $\{2, 3, 5, 7\}$ are there?

- (a) 9
- (b) 27
- (c) 81
- (d) 8
- (e) 16
- (f) 32

(20) If $1+4+7+10+\ldots+(3n-2)=\frac{n(3n-1)}{2}$ and we add 3(n+1)-2 to the left side, what is the new value of the right side?

(a)
$$\frac{(n+4)(3n+5)}{2}$$

(b)
$$\frac{(n+3)(3n+4)}{2}$$

(c)
$$\frac{(n+2)(3n+3)}{2}$$

(d)
$$\frac{(n+1)(3n+2)}{2}$$

(e)
$$\frac{n(3n+1)}{2}$$

(f)
$$\frac{(n-1)(3n)}{2}$$

Answer Key

(1) A (1) A (2) E (3) B (4) A (5) A

(6) D

(11) F (12) D (16) D

(7) E (8) C (9) B (10) A

(13) B

(17) E (18) C (19) E (20) D

(14) F (15) C