WINTER 2019 - PH.D. PRELIMINARY EXAMINATION ORDINARY DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS

Instructions: Give solutions to exactly 6 of the following 8 problems. If you give more than 6 solutions, your grade will be determined by the first 6 that appear. WRITE ON ONE SIDE OF THE PAPER ONLY AND LEAVE AN INCH MARGIN ALL AROUND.

- (1) Let x' = f(x) where $f : \mathbb{R}^2 \to \mathbb{R}^2$ is locally Lipschitz. Assume that $\xi \in \mathbb{R}^2$ is periodic for the system and there are no periodic points in the interior of orbit of ξ . Prove there is a fixed point in the interior of the orbit of ξ .
- (2) Consider the following differential equation in \mathbb{R}^n

$$x' = Ax + B(t)x + q(x, t)$$

where

- (a) A is a constant $n \times n$ matrix whose eigenvalues all have negative real parts,
- (b) B(t) maps continuously into the set of $n \times n$ matrices such that $||B(t)|| \to 0$ as $t \to \infty$, and
- (c) g(x,t) is C^2 and there are constants a > 0 and k > 0 such that $||g(x,t)|| \le k||x||^2$ for all $t \ge 0$ and ||x|| < a.

Prove that there are constants C > 1, $\delta > 0$, and $\lambda > 0$ such that

$$||x(t, t_0, x_0)|| \le C||x_0||e^{-\lambda(t-t_0)}$$

whenever $t \geq t_0$, $||x_0|| \leq \delta/C$ and $x(t, t_0, x_0)$ is the solution of the above equation with $x(t_0, t_0, x_0) = x_0$.

(3) Find the fixed points and classify them for the system

$$x' = -10x + 10y$$

$$y' = 28x - y - xz$$

$$z' = \frac{8}{3}z + xy$$

- (4) Consider the flow $e^{At}\mathbf{x}$ for the linear differential equation $\mathbf{x}' = A\mathbf{x}$ with $x \in \mathbb{R}^n$. Prove that all the eigenvalues of A have nonzero real part if and only if for each $\mathbf{x} \in \mathbb{R}^d$ either $\omega(\mathbf{x}) = \{\mathbf{0}\}$ or $\omega(\mathbf{x}) = \emptyset$.
- (5) Let $g_{\mu}(x) = x + x^2 + \mu$ be a one-parameter family of functions with parameter $\mu \in \mathbb{R}$. Show that this family undergoes a saddle-node bifurcation at some $\mu \in (-1, 1)$.

- (6) Suppose (X, d_1) and (Y, d_2) are compact metric spaces and $f: X \to X$ and $g: Y \to Y$ are continuous maps. Show that the topological entropy $h_{\text{top}}(f \times g) = h_{\text{top}}(f) + h_{\text{top}}(g)$.
- (7) Suppose $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function with a period-2 orbit $f(p_1) = p_2$ and $f(p_2) = p_1$.
 - (a) Find the Lyapunov exponent $\chi_f(p_1, v)$ of p_1 under the function f for a nonzero $v \in \mathbb{R}$.
 - (b) Let $g = f^k$ where $k \in \mathbb{N}$. If $\chi_f(x_0, v) = \ell$ for some $x_0 \in \mathbb{R}$, then find $\chi_g(x_0, v)$ in terms of ℓ .
- (8) Suppose $f: X \to X$ and $g: Y \to Y$ are continuous functions where X and Y are metric spaces. If there is a semi-conjugacy $\pi: Y \to X$ from g to f, prove that if $g: Y \to Y$ is topologically mixing then $f: X \to X$ is topologically mixing.