The Inverse Eigenvalue Problem for Graphs of Low Minimum Rank

Wayne Barrett, Seth Gibelyou, Mark Kempton, Annie Lazenby, Nicole Malloy, Curtis Nelson, William Sexton, John Sinkovic, Robert Yang

October 13, 2011

Brigham Young University
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

\[
A = \begin{bmatrix}
 b & a & c & d \\
 a & d & 0 & 0 \\
 c & 0 & b & 0 \\
 d & 0 & 0 & d
\end{bmatrix} \in S_n(G)
\]
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

vertex set $V = \{1, 2, \ldots, n\}$
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

vertex set $V = \{1, 2, \ldots, n\}$ and

edge set $E = \{\{i, j\}|a_{ij} \neq 0\}$
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

- vertex set $V = \{1, 2, \ldots, n\}$ and
- edge set $E = \{\{i, j\} | a_{ij} \neq 0\}$

For any graph G, let $S(G) = \{A \in S_n \mid G(A) = G\}$
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

vertex set $V = \{1, 2, \ldots, n\}$ and

edge set $E = \{\{i, j\} | a_{ij} \neq 0\}$

For any graph G, let $S(G) = \{A \in S_n | G(A) = G\}$
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

- vertex set $V = \{1, 2, \ldots, n\}$ and
- edge set $E = \{\{i, j\} \mid a_{ij} \neq 0\}$

For any graph G, let $S(G) = \{A \in S_n \mid G(A) = G\}$

\[
A = \begin{bmatrix}
d_1 & a & b & 0
da & d_2 & c & 0
b & c & d_3 & d
0 & 0 & d & d_4
\end{bmatrix} \in S(G)
\]
Symmetric Matrix associated with a Graph

\(S_n \) - set of all \(n \times n \) real symmetric matrices

Given \(A \in S_n \), let \(G(A) \) be the graph with
- vertex set \(V = \{1, 2, \ldots, n\} \) and
- edge set \(E = \{\{i, j\} | a_{ij} \neq 0\} \)

For any graph \(G \), let \(S(G) = \{A \in S_n | G(A) = G\} \)

\[
A = \begin{bmatrix}
 d_1 & a & b & 0 \\
 a & d_2 & c & 0 \\
 b & c & d_3 & d \\
 0 & 0 & d & d_4
\end{bmatrix} \in S(G)
\]
Let $mr(G)$ be the minimum rank over all matrices in $S(G)$.
Minimum Rank Problem

- Let $mr(G)$ be the minimum rank over all matrices in $S(G)$.
- Let $M(G)$ to be the maximum nullity over all matrices in $S(G)$.

Since $mr(G) + M(G) = n$, computing the minimum rank and the maximum nullity are equivalent problems.

Computing $M(G)$ or $mr(G)$ for a general graph is hard. Easy for $n < 6$.

$mr(paw) = 2$

$\begin{bmatrix}
 d & a & b & 0 \\
 a & d & 2 & c \\
 b & c & d & 0 \\
 0 & 0 & d & d
\end{bmatrix}$
Minimum Rank Problem

- Let \(\text{mr}(G) \) be the minimum rank over all matrices in \(S(G) \).
- Let \(M(G) \) to be the maximum nullity over all matrices in \(S(G) \).
- Since \(\text{mr}(G) + M(G) = n \), computing the minimum rank and the maximum nullity are equivalent problems.
Minimum Rank Problem

- Let \(mr(G) \) be the minimum rank over all matrices in \(S(G) \).

- Let \(M(G) \) to be the maximum nullity over all matrices in \(S(G) \).

- Since \(mr(G) + M(G) = n \), computing the minimum rank and the maximum nullity are equivalent problems.

- Computing \(M(G) \) or \(mr(G) \) for a general graph is hard.
Minimum Rank Problem

- Let $mr(G)$ be the minimum rank over all matrices in $S(G)$.
- Let $M(G)$ to be the maximum nullity over all matrices in $S(G)$.
- Since $mr(G) + M(G) = n$, computing the minimum rank and the maximum nullity are equivalent problems.
- Computing $M(G)$ or $mr(G)$ for a general graph is hard.
- Easy for $n < 6$.

\[
\begin{bmatrix}
d_1 & a & b & 0 \\
a & d_2 & c & 0 \\
b & c & d_3 & 0 \\
0 & 0 & d & d_4 \\
\end{bmatrix}
\]
Minimum Rank Problem

- Let $\text{mr}(G)$ be the minimum rank over all matrices in $S(G)$.
- Let $M(G)$ to be the maximum nullity over all matrices in $S(G)$.
- Since $\text{mr}(G) + M(G) = n$, computing the minimum rank and the maximum nullity are equivalent problems.
- Computing $M(G)$ or $\text{mr}(G)$ for a general graph is hard.
- Easy for $n < 6$.

$$\text{mr(paw)} = 2$$
Let \(\text{mr}(G) \) be the minimum rank over all matrices in \(S(G) \).

Let \(M(G) \) to be the maximum nullity over all matrices in \(S(G) \).

Since \(\text{mr}(G) + M(G) = n \), computing the minimum rank and the maximum nullity are equivalent problems.

Computing \(M(G) \) or \(\text{mr}(G) \) for a general graph is hard.

Easy for \(n < 6 \).

\[
\text{mr}(\text{paw}) = 2
\begin{bmatrix}
d_1 & a & b & 0 \\
a & d_2 & c & 0 \\
b & c & d_3 & d \\
0 & 0 & d & d_4
\end{bmatrix}
\]
Minimum Rank Problem

- Let $mr(G)$ be the minimum rank over all matrices in $S(G)$.

- Let $M(G)$ to be the maximum nullity over all matrices in $S(G)$.

- Since $mr(G) + M(G) = n$, computing the minimum rank and the maximum nullity are equivalent problems.

- Computing $M(G)$ or $mr(G)$ for a general graph is hard.

- Easy for $n < 6$.

$$mr(\text{paw}) = 2$$

$$\begin{bmatrix} d_1 & a & b & 0 \\ a & d_2 & c & 0 \\ b & c & d_3 & d \\ 0 & 0 & d & d_4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
The problem of computing maximum nullity is related to a harder problem.
The problem of computing maximum nullity is related to a harder problem.

Question

Given a graph G on n vertices and numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$, is there an $A \in S(G)$ such that the eigenvalues of A are exactly these numbers?
The problem of computing maximum nullity is related to a harder problem.

Question

Given a graph G on n vertices and numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$, is there an $A \in S(G)$ such that the eigenvalues of A are exactly these numbers?

The Combinatorial Inverse Eigenvalue Problem is currently too difficult to solve for almost all graphs.
The problem of computing maximum nullity is related to a harder problem.

Question

Given a graph G on n vertices and numbers $\lambda_1, \lambda_2, ..., \lambda_n$, is there an $A \in S(G)$ such that the eigenvalues of A are exactly these numbers?

The Combinatorial Inverse Eigenvalue Problem is currently too difficult to solve for almost all graphs.

But knowing the maximum nullity allows us to at least know the largest possible multiplicity of any eigenvalue of a matrix in $S(G)$.
Example

Can nonzero a, b, c, d be chosen so that the eigenvalues of
\[
\begin{pmatrix}
 1 & 2 & 3 & 4 \\
 2 & 1 & 4 & 3 \\
 3 & 4 & 1 & 2 \\
 4 & 3 & 2 & 1
\end{pmatrix}
\]
are 3, 2, 1, 0?

Answers: 3 Yes 1 No
Example

Can nonzero a, b, c, d be chosen so that the eigenvalues of

$$
\begin{bmatrix}
 d_1 & a & b & 0 \\
 a & d_2 & c & 0 \\
 b & c & d_3 & d \\
 0 & 0 & d & d_4 \\
\end{bmatrix}
$$

are 3, 2, 1, 0?
Can nonzero a, b, c, d be chosen so that the eigenvalues of

$$
\begin{bmatrix}
 d_1 & a & b & 0 \\
 a & d_2 & c & 0 \\
 b & c & d_3 & d \\
 0 & 0 & d & d_4 \\
\end{bmatrix}
$$

are $3, 2, 1, 0$? $2, 1, 0, 0$?
Example

Can nonzero a, b, c, d be chosen so that the eigenvalues of

\[
\begin{bmatrix}
 d_1 & a & b & 0 \\
 a & d_2 & c & 0 \\
 b & c & d_3 & d \\
 0 & 0 & d & d_4
\end{bmatrix}
\]

are $3, 2, 1, 0$? $2, 1, 0, 0$? $1, 1, 0, 0$?
Can nonzero a, b, c, d be chosen so that the eigenvalues of

\[
\begin{bmatrix}
 d_1 & a & b & 0 \\
 a & d_2 & c & 0 \\
 b & c & d_3 & d \\
 0 & 0 & d & d_4 \\
\end{bmatrix}
\]

are 3, 2, 1, 0? 2, 1, 0, 0? 1, 1, 0, 0? 1, 0, 0, −1?
Can nonzero a, b, c, d be chosen so that the eigenvalues of

\[
\begin{pmatrix}
d_1 & a & b & 0 \\
a & d_2 & c & 0 \\
b & c & d_3 & d \\
0 & 0 & d & d_4
\end{pmatrix}
\]

are $3, 2, 1, 0$? $2, 1, 0, 0$? $1, 1, 0, 0$? $1, 0, 0, -1$?

Answers: 3 Yes 1 No
Let G be the vertex sum of K_m and K_n.
Let G be the vertex sum of K_m and K_n
1-connected Clique Sum

Let G be the vertex sum of K_m and K_n

$K_5 \oplus K_3$:

mr(G) = 2
Let G be the vertex sum of K_m and K_n

$$K_5 \oplus K_3:$$

$mr(G) = 2$

Question

Given two nonzero real numbers, λ, μ is there an $A \in S(G)$ such that the eigenvalues of A are: λ, μ, and 0 with multiplicity $n - 2$?
Theorem

Let G be a connected graph and suppose there exist vertices u, v of G such that there is a unique path from u to v of length $d(u, v)$.

There is a unique path from u to v of length 2, so any $A \in S(G)$ must have 3 distinct eigenvalues.
Theorem

Let G be a connected graph and suppose there exist vertices u, v of G such that there is a unique path from u to v of length $d(u, v)$. Then any $A \in S(G)$ has at least $d(u, v) + 1$ distinct eigenvalues.
Theorem

Let G be a connected graph and suppose there exist vertices u, v of G such that there is a unique path from u to v of length $d(u, v)$. Then any $A \in S(G)$ has at least $d(u, v) + 1$ distinct eigenvalues.
Theorem

Let G be a connected graph and suppose there exist vertices u, v of G such that there is a unique path from u to v of length $d(u, v)$. Then any $A \in S(G)$ has at least $d(u, v) + 1$ distinct eigenvalues.

There is a unique path from u to v of length 2, so any $A \in S(G)$ must have 3 distinct eigenvalues.
Can nonzero a, b, c, d be chosen so that the eigenvalues of

\[
\begin{bmatrix}
d_1 & a & b & 0 \\
a & d_2 & c & 0 \\
b & c & d_3 & d \\
0 & 0 & d & d_4
\end{bmatrix}
\]

are $3, 2, 1, 0?$ $2, 1, 0, 0?$ $1, 1, 0, 0?$ $1, 0, 0, -1?$
Can nonzero a, b, c, d be chosen so that the eigenvalues of

$$
\begin{bmatrix}
d_1 & a & b & 0 \\
a & d_2 & c & 0 \\
b & c & d_3 & d \\
0 & 0 & d & d_4
\end{bmatrix}
$$

are $3, 2, 1, 0$? $2, 1, 0, 0$? $1, 1, 0, 0$? $1, 0, 0, -1$?

\times
Theorem

Let G be a connected graph whose minimum rank is 2. Then we have the following restrictions in the Inverse Eigenvalue Problem:

- If G is a vertex sum of two cliques, then a rank minimizing matrix for G cannot have a nonzero eigenvalue of multiplicity two.
- If $G = K_k \lor K_\ell$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G must sum to 0.
- If $G = K_k \lor K_1$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G cannot sum to 0.

Any two nonzero eigenvalues not ruled out by the $mr^+ (G)$ or the restrictions above can be attained by a rank minimizing matrix.

$mr^+ (G)$ is the minimum rank over all positive semidefinite matrices in $S(G)$.
‘Solution’ of IEP for minimum rank 2 graphs

Theorem

Let G be a connected graph whose minimum rank is 2. Then we have the following restrictions in the Inverse Eigenvalue Problem:

- If G is a vertex sum of two cliques, then a rank minimizing matrix for G cannot have a nonzero eigenvalue of multiplicity two.

- If $G = K_k \lor K_1$, where $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G cannot sum to 0.

Any two nonzero eigenvalues not ruled out by the $mr^+(G)$ or the restrictions above can be attained by a rank minimizing matrix.

$mr^+(G)$ is the minimum rank over all positive semidefinite matrices in $S(G)$.
Theorem

Let G be a connected graph whose minimum rank is 2. Then we have the following restrictions in the Inverse Eigenvalue Problem:

- If G is a vertex sum of two cliques, then a rank minimizing matrix for G cannot have a nonzero eigenvalue of multiplicity two.
- If $G = K_{k,\ell}$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G must sum to 0.

Any two nonzero eigenvalues not ruled out by the mr^+ of G or the restrictions above can be attained by a rank minimizing matrix. mr^+ is the minimum rank over all positive semidefinite matrices in $S(G)$.
Theorem

Let G be a connected graph whose minimum rank is 2. Then we have the following restrictions in the Inverse Eigenvalue Problem:

- If G is a vertex sum of two cliques, then a rank minimizing matrix for G cannot have a nonzero eigenvalue of multiplicity two.
- If $G = K_{k,\ell}$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G must sum to 0.
- If $G = K_{k,\ell} \lor K_1$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G cannot sum to 0.

Any two nonzero eigenvalues not ruled out by the $\mr(G)$ or the restrictions above can be attained by a rank minimizing matrix. $\mr(G)$ is the minimum rank over all positive semidefinite matrices in $S(G)$.

Wayne Barrett (BYU)
Let G be a connected graph whose minimum rank is 2. Then we have the following restrictions in the Inverse Eigenvalue Problem:

- If G is a vertex sum of two cliques, then a rank minimizing matrix for G cannot have a nonzero eigenvalue of multiplicity two.
- If $G = K_k, \ell$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G must sum to 0.
- If $G = K_k, \ell \lor K_1$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G cannot sum to 0.

Any two nonzero eigenvalues not ruled out by the $\text{mr}_+(G)$ or the restrictions above can be attained by a rank minimizing matrix.
Let G be a connected graph whose minimum rank is 2. Then we have the following restrictions in the Inverse Eigenvalue Problem:

- If G is a vertex sum of two cliques, then a rank minimizing matrix for G cannot have a nonzero eigenvalue of multiplicity two.
- If $G = K_k, \ell$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G must sum to 0.
- If $G = K_k, \ell \lor K_1$, $k, \ell \geq 3$, then the two nonzero eigenvalues of a rank minimizing matrix for G cannot sum to 0.

Any two nonzero eigenvalues not ruled out by the $\text{mr}_+(G)$ or the restrictions above can be attained by a rank minimizing matrix.

$\text{mr}_+(G)$ is the minimum rank over all positive semidefinite matrices in $S(G)$.
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of G. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

The theorem actually says more: If the degree of vertex v is greater than 1, the eigenvalues μ_1, \ldots, μ_{n-1} can be distributed in any way among the branches of $T - v$.
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of G. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of G. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of G. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

The theorem actually says more:
Inverse Eigenvalue Problem for Trees

Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of G. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

The theorem actually says more:
If the degree of vertex v is greater than 1, the eigenvalues μ_1, \ldots, μ_{n-1} can be distributed in any way among the branches of $T - v$.
Let G be a graph on n vertices.
Let G be a graph on n vertices.

1. Given n distinct real numbers $\lambda_1 > \lambda_2 > \cdots > \lambda_n$, is there a matrix $A \in S(G)$ with eigenvalues equal to $\lambda_1, \lambda_2, \ldots, \lambda_n$?
Let G be a graph on n vertices.

1. Given n distinct real numbers $\lambda_1 > \lambda_2 > \cdots > \lambda_n$, is there a matrix $A \in S(G)$ with eigenvalues equal to $\lambda_1, \lambda_2, \ldots, \lambda_n$?

2. Given a vertex v of G and $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, is there a matrix $A \in S(G)$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$?
Open Questions

Let G be a graph on n vertices.

1. Given n distinct real numbers $\lambda_1 > \lambda_2 > \cdots > \lambda_n$, is there a matrix $A \in S(G)$ with eigenvalues equal to $\lambda_1, \lambda_2, \ldots, \lambda_n$?

2. Given a vertex v of G and $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, is there a matrix $A \in S(G)$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$?

Intuition: Since both results are true for a tree, it seems they ought to be true for any connected graph.
Question 1 for K_n

Theorem

Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then there exists an $A \in S(K_n)$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ if and only if $\lambda_1 > \lambda_n$.

$n = 2$: Let $A = \begin{bmatrix} \lambda_1 & \lambda_2 \\ \lambda_1 & -\lambda_2 \end{bmatrix}$

$n > 2$: Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ with $\lambda_1 > \lambda_n$

Case 1. $\lambda_2 = \lambda_n$:

Let $A = \begin{bmatrix} \lambda_1 & -\lambda_2 \\ \lambda_1 & \lambda_2 \end{bmatrix}$

A has eigenvalues λ_1 and λ_2 with multiplicity $n-1$.
Question 1 for K_n

Theorem

Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then there exists an $A \in S(K_n)$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ if and only if $\lambda_1 > \lambda_n$.
Question 1 for K_n

Theorem

Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then there exists an $A \in S(K_n)$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ if and only if $\lambda_1 > \lambda_n$.

$n = 2$: Let $A = \frac{1}{2} \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix}$
Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then there exists an $A \in S(K_n)$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ if and only if $\lambda_1 > \lambda_n$.

$n = 2$: Let $A = \frac{1}{2} \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix}$

$n > 2$: Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ with $\lambda_1 > \lambda_n$
Theorem

Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then there exists an $A \in S(K_n)$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ if and only if $\lambda_1 > \lambda_n$.

$n = 2$: Let $A = \frac{1}{2} \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix}$

$n > 2$: Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ with $\lambda_1 > \lambda_n$

Case 1. $\lambda_2 = \lambda_n$:
Theorem

Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then there exists an $A \in S(K_n)$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ if and only if $\lambda_1 > \lambda_n$.

$n = 2$: Let $A = \frac{1}{2} \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix}$

$n > 2$: Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ with $\lambda_1 > \lambda_n$

Case 1. $\lambda_2 = \lambda_n$: Let $A = \frac{\lambda_1 - \lambda_2}{n} J_n + \lambda_2 I_n$
Question 1 for K_n

Theorem

Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then there exists an $A \in S(K_n)$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ if and only if $\lambda_1 > \lambda_n$.

$n = 2$: Let $A = \frac{1}{2} \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix}$

$n > 2$: Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ with $\lambda_1 > \lambda_n$

Case 1. $\lambda_2 = \lambda_n$: Let $A = \frac{\lambda_1 - \lambda_2}{n} J_n + \lambda_2 I_n$

A has eigenvalues λ_1, and λ_2 with multiplicity $n - 1$.
Case 2: $\lambda_2 > \lambda_n$
Case 2: $\lambda_2 > \lambda_n$

By the induction hypothesis, there exists $B \in S(K_{n-1})$ with eigenvalues $\lambda_2, \ldots, \lambda_n$.
Case 2: $\lambda_2 > \lambda_n$

By the induction hypothesis, there exists $B \in S(K_{n-1})$ with eigenvalues $\lambda_2, \ldots, \lambda_n$.

Since K_{n-1} is connected, $\lambda_2 > b_{ii}$ for $i = 1, \ldots, n - 1$.
Question 1 for K_n

Case 2: $\lambda_2 > \lambda_n$

By the induction hypothesis, there exists $B \in S(K_{n-1})$ with eigenvalues $\lambda_2, \ldots, \lambda_n$.

Since K_{n-1} is connected, $\lambda_2 > b_{ii}$ for $i = 1, \ldots, n - 1$.

Let $A = \begin{bmatrix} \lambda_1 & 0^T \\ 0 & B \end{bmatrix}$ which has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.
Case 2: $\lambda_2 > \lambda_n$

By the induction hypothesis, there exists $B \in S(K_{n-1})$ with eigenvalues $\lambda_2, \ldots, \lambda_n$.

Since K_{n-1} is connected, $\lambda_2 > b_{ii}$ for $i = 1, \ldots, n - 1$.

Let $A = \begin{bmatrix} \lambda_1 & 0^T \\ 0 & B \end{bmatrix}$ which has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

and let $Q = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ be a 2×2 orthogonal matrix such that $cs \neq 0$.
Case 2: $\lambda_2 > \lambda_n$

By the induction hypothesis, there exists $B \in S(K_{n-1})$ with eigenvalues $\lambda_2, \ldots, \lambda_n$.

Since K_{n-1} is connected, $\lambda_2 > b_{ii}$ for $i = 1, \ldots, n - 1$.

Let $A = \begin{bmatrix} \lambda_1 & 0^T \\ 0 & B \end{bmatrix}$ which has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$

and let $Q = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ be a 2×2 orthogonal matrix such that $cs \neq 0$, and

Let $\begin{bmatrix} p & r \\ r & q \end{bmatrix} = Q^T \begin{bmatrix} \lambda_1 & 0 \\ 0 & b_{11} \end{bmatrix} Q$
Case 2: $\lambda_2 > \lambda_n$

By the induction hypothesis, there exists $B \in S(K_{n-1})$ with eigenvalues $\lambda_2, \ldots, \lambda_n$.

Since K_{n-1} is connected, $\lambda_2 > b_{ii}$ for $i = 1, \ldots, n - 1$.

Let $A = \begin{bmatrix} \lambda_1 & 0^T \\ 0 & B \end{bmatrix}$ which has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

and let $Q = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ be a 2×2 orthogonal matrix such that $cs \neq 0$, and

Let $\begin{bmatrix} p & r \\ r & q \end{bmatrix} = Q^T \begin{bmatrix} \lambda_1 & 0 \\ 0 & b_{11} \end{bmatrix} Q$ $r \neq 0$ since $\lambda_1 > b_{11}$.
Write $B = \begin{bmatrix} b_{11} & b^T \\ b & C \end{bmatrix}$ where every entry of b is not zero,
Write $B = \begin{bmatrix} b_{11} & b^T \\ b & C \end{bmatrix}$ where every entry of b is not zero,
and let $Q_n = Q \oplus I_{n-2}$
Question 1 for K_n

Write $B = \begin{bmatrix} b_{11} & b^T \\ b & C \end{bmatrix}$ where every entry of b is not zero,

and let $Q_n = Q \oplus I_{n-2}$

Then $Q_n^T A Q_n = \begin{bmatrix} c & s & 0^T \\ -s & c & 0^T \\ 0 & 0 & I_{n-2} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0^T \\ 0 & b_{11} & b^T \\ 0 & b & C \end{bmatrix} \begin{bmatrix} c & -s & 0^T \\ s & c & 0^T \\ 0 & 0 & I_{n-2} \end{bmatrix}$
Write $B = \begin{bmatrix} b_{11} & b^T \\ b & C \end{bmatrix}$ where every entry of b is not zero,

and let $Q_n = Q \oplus I_{n-2}$

Then $Q_n^T A Q_n = \begin{bmatrix} c & s & 0^T \\ -s & c & 0^T \\ 0 & 0 & I_{n-2} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0^T \\ 0 & b_{11} & b^T \\ 0 & b & C \end{bmatrix} \begin{bmatrix} c & -s & 0^T \\ s & c & 0^T \\ 0 & 0 & I_{n-2} \end{bmatrix}$

\[= \begin{bmatrix} p & r & s b^T \\ r & q & c b^T \\ s b & c b & C \end{bmatrix} \]
Write \(B = \begin{bmatrix} b_{11} & \mathbf{b}^T \\ \mathbf{b} & C \end{bmatrix} \) where every entry of \(\mathbf{b} \) is not zero,

and let \(Q_n = Q \oplus I_{n-2} \)

Then \(Q_n^T A Q_n = \begin{bmatrix} c & s & 0^T \\ -s & c & 0^T \\ 0 & 0 & I_{n-2} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0^T \\ 0 & b_{11} & \mathbf{b}^T \\ 0 & \mathbf{b} & C \end{bmatrix} \begin{bmatrix} c & -s & 0^T \\ s & c & 0^T \\ 0 & 0 & I_{n-2} \end{bmatrix} \)

\[= \begin{bmatrix} p & r & s \mathbf{b}^T \\ r & q & c \mathbf{b}^T \\ s \mathbf{b} & c \mathbf{b} & C \end{bmatrix} \in S(K_n) \]
Question 1 for K_n

Write $B = \begin{bmatrix} b_{11} & b^T \\ b & C \end{bmatrix}$ where every entry of b is not zero, and let $Q_n = Q \oplus I_{n-2}$

Then $Q_n^T A Q_n = \begin{bmatrix} c & s & 0^T \\ -s & c & 0^T \\ 0 & 0 & I_{n-2} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0^T \\ 0 & b_{11} & b^T \\ 0 & b & C \end{bmatrix} \begin{bmatrix} c & -s & 0^T \\ s & c & 0^T \\ 0 & 0 & I_{n-2} \end{bmatrix}$

$= \begin{bmatrix} p & r & s b^T \\ r & q & c b^T \\ s b & c b & C \end{bmatrix} \in S(K_n)$

and has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$
Let G be a graph on n vertices.

1. Given n distinct real numbers $\lambda_1 > \lambda_2 > \cdots > \lambda_n$, is there a matrix $A \in S(G)$ with eigenvalues equal to $\lambda_1, \lambda_2, \ldots, \lambda_n$?

2. Given a vertex v of G and $2n-1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, is there a matrix $A \in S(G)$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$?
Let $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$.
Question 2 for K_n

Let $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$.

By Duarte’s theorem we can choose $y \in \mathbb{R}^{n-1}$, $d \in \mathbb{R}$ so that the matrix

$$A = \begin{bmatrix} M & y \\ y^T & d \end{bmatrix},$$
Question 2 for K_n

Let $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$.

By Duarte’s theorem we can choose $y \in \mathbb{R}^{n-1}$, $d \in \mathbb{R}$ so that the matrix

$$A = \begin{bmatrix} M & y \\ y^T & d \end{bmatrix},$$

where $M = \begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mu_{n-1} \end{bmatrix}$.
Let $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$.

By Duarte's theorem we can choose $y \in \mathbb{R}^{n-1}$, $d \in \mathbb{R}$ so that the matrix

$$A = \begin{bmatrix} M & y \\ y^T & d \end{bmatrix},$$

where $M = \begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \mu_{n-1} \end{bmatrix}$

has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Wayne Barrett (BYU)
Inverse Eigenvalue Problem for Graphs
October 13, 2011 16 / 22
Let $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$.

By Duarte's theorem we can choose $y \in \mathbb{R}^{n-1}$, $d \in \mathbb{R}$ so that the matrix

$$A = \begin{bmatrix} M & y \\ y^T & d \end{bmatrix}, \quad \text{where } M = \begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & & 0 \\ & \vdots & \ddots & \end{bmatrix}$$

has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

We used the fact that $G(A)$ is a star.
Let $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$.

By Duarte’s theorem we can choose $y \in \mathbb{R}^{n-1}$, $d \in \mathbb{R}$ so that the matrix

$$A = \begin{bmatrix} M & y \\ y^T & d \end{bmatrix}, \quad \text{where } M = \begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mu_{n-1} \end{bmatrix}$$

has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

We used the fact that $G(A)$ is a star.

We no longer need all the inequalities, just that $\lambda_1, \lambda_2, \ldots, \lambda_n$ is attainable for a star if μ_1, \ldots, μ_{n-1} are the eigenvalues when the central vertex is deleted.
Question 2 for K_n

Let $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$.

By Duarte’s theorem we can choose $y \in \mathbb{R}^{n-1}$, $d \in \mathbb{R}$ so that the matrix

$$A = \begin{bmatrix} M & y \\ y^T & d \end{bmatrix}, \quad \text{where} \quad M = \begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mu_{n-1} \end{bmatrix}$$

has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

We used the fact that $G(A)$ is a star.

We no longer need all the inequalities, just that $\lambda_1, \lambda_2, \ldots, \lambda_n$ is attainable for a star if μ_1, \ldots, μ_{n-1} are the eigenvalues when the central vertex is deleted.

More possibilities are attainable for a star than any other tree.
Let Q be an orthogonal $n - 1 \times n - 1$ matrix.
Let Q be an orthogonal $n - 1 \times n - 1$ matrix. Then

$$C = \begin{bmatrix} Q^T & 0 \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} M & y \\ y^T & d \end{bmatrix} \begin{bmatrix} Q & 0 \\ 0^T & 1 \end{bmatrix}$$
Let Q be an orthogonal $n - 1 \times n - 1$ matrix. Then

$$C = \begin{bmatrix} Q^T & 0 \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} M & \mathbf{y} \\ \mathbf{y}^T & d \end{bmatrix} \begin{bmatrix} Q & 0 \\ 0^T & 1 \end{bmatrix} = \begin{bmatrix} Q^T M Q & Q^T \mathbf{y} \\ \mathbf{y}^T Q & d \end{bmatrix}$$
Let Q be an orthogonal $n-1 \times n-1$ matrix. Then

$$C = \begin{bmatrix} Q^T & 0 \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} M & y \\ y^T & d \end{bmatrix} \begin{bmatrix} Q & 0 \\ 0^T & 1 \end{bmatrix} = \begin{bmatrix} Q^T M Q & Q^T y \\ y^T Q & d \end{bmatrix}$$

This matrix still has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.
Let Q be an orthogonal $n - 1 \times n - 1$ matrix. Then

$$C = \begin{bmatrix} Q^T & 0 \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} M & y^T \\ y & d \end{bmatrix} \begin{bmatrix} Q & 0 \\ 0^T & 1 \end{bmatrix} = \begin{bmatrix} Q^TMQ & Q^Ty \\ y^TQ & d \end{bmatrix}$$

This matrix still has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$

and Q^TMQ still has eigenvalues μ_1, \ldots, μ_{n-1}.

Now the question is how well can we control the zero/nonzero structure of Q^TMQ and Qy?
Let Q be an orthogonal $n - 1 \times n - 1$ matrix. Then

$$C = \begin{bmatrix} Q^T & 0 \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} M & y \\ y^T & d \end{bmatrix} \begin{bmatrix} Q & 0 \\ 0^T & 1 \end{bmatrix} = \begin{bmatrix} Q^T M Q & Q^T y \\ y^T Q & d \end{bmatrix}$$

This matrix still has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$

and $Q^T M Q$ still has eigenvalues μ_1, \ldots, μ_{n-1}.

Now the question is how well can we control the zero/nonzero structure of the matrices $Q^T M Q$ and Qy?
Question 2 for K_n

$$C = \begin{bmatrix} Q^T M Q & Q y \\ y^T & d \end{bmatrix}$$
Question 2 for K_n

$$C = \begin{bmatrix} Q^T MQ & Qy \\ y^T & d \end{bmatrix}$$

Suppose we let $Q = I - 2xx^T$ where x is a unit vector in R^{n-1}
Question 2 for K_n

$$C = \begin{bmatrix} Q^T M Q & Q y \\ y^T & d \end{bmatrix}$$

Suppose we let $Q = I - 2x x^T$ where x is a unit vector in R^{n-1}

A calculation gives:

$$(Q^T M Q)_{ij} = 2x_i x_j \left[2 \sum_{i=1}^{n-1} \mu_i x_i^2 - \mu_i - \mu_j \right]$$
Question 2 for K_n

$$C = \begin{bmatrix} Q^T MQ & Qy \\ y^T & d \end{bmatrix}$$

Suppose we let $Q = I - 2xx^T$ where x is a unit vector in \mathbb{R}^{n-1}

A calculation gives:

$$(Q^T MQ)_{ij} = 2x_ix_j \left[2 \sum_{i=1}^{n-1} \mu_i x_i^2 - \mu_i - \mu_j \right]$$

and $Qy = y - 2x \cdot y \cdot x$
Question 2 for K_n

$$C = \begin{bmatrix} Q^T M Q & Q y \\ y^T & d \end{bmatrix}$$

Suppose we let $Q = I - 2xx^T$ where x is a unit vector in R^{n-1}

A calculation gives:

$$(Q^T M Q)_{ij} = 2x_i x_j \left[2 \sum_{i=1}^{n-1} \mu_i x_i^2 - \mu_i - \mu_j \right]$$

and

$$Q y = y - 2 x \cdot y \cdot x$$

As long as $\mu_1 > \mu_{n-1}$, it is possible to make all of these nonzero.
Question 2 for K_n

\[C = \begin{bmatrix} Q^T MQ & Qy \\ y^T & d \end{bmatrix} \]

Suppose we let $Q = I - 2xx^T$ where x is a unit vector in \mathbb{R}^{n-1}

A calculation gives:

\[(Q^T MQ)_{ij} = 2x_ix_j \left[2 \sum_{i=1}^{n-1} \mu_i x_i^2 - \mu_i - \mu_j \right] \text{ and } Qy = y - 2x \cdot y \cdot x\]

As long as $\mu_1 > \mu_{n-1}$, it is possible to make all of these nonzero.

Then $C \in \mathcal{S}(K_n)$, has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$
Question 2 for K_n

$$C = \begin{bmatrix} QTMQ & Qy \\ y^T & d \end{bmatrix}$$

Suppose we let $Q = I - 2x x^T$ where x is a unit vector in \mathbb{R}^{n-1}

A calculation gives:

$$(Q^T MQ)_{ij} = 2x_i x_j \left[2 \sum_{i=1}^{n-1} \mu_i x_i^2 - \mu_i - \mu_j \right]$$

and

$$Qy = y - 2x \cdot y x$$

As long as $\mu_1 > \mu_{n-1}$, it is possible to make all of these nonzero.

Then $C \in \mathcal{S}(K_n)$, has eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$

and $C(n)$ has eigenvalues μ_1, \ldots, μ_{n-1}.
Let G be a graph on n vertices.

1. Given n distinct real numbers $\lambda_1 > \lambda_2 > \cdots > \lambda_n$, is there a matrix $A \in S(G)$ with eigenvalues equal to $\lambda_1, \lambda_2, \ldots, \lambda_n$?

2. Given a vertex v of G and $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, is there a matrix $A \in S(G)$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$?
Question 2 for arbitrary graphs

Transfer theorems: A representative is
Transfer theorems: A representative is

Theorem

Let T be a tree on $n > 2$ vertices, let u,v be adjacent vertices of T, and let w be any other vertex of T. Given any $2n-1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \ldots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there is a matrix $A \in S(G)$ such that $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(w)$.
Transfer theorems: A representative is

Theorem

Let \(T \) be a tree on \(n > 2 \) vertices, let \(u, v \) be adjacent vertices of \(T \), and let \(w \) be any other vertex of \(T \). Let \(G \) be the graph obtained from \(T \) by inserting an edge between \(u \) and every vertex in \(N(v) \setminus \{u\} \) and between \(v \) and every vertex in \(N(u) \setminus \{v\} \).
Transfer theorems: A representative is

Theorem

Let T be a tree on $n > 2$ vertices, let u,v be adjacent vertices of T, and let w be any other vertex of T. Let G be the graph obtained from T by inserting an edge between u and every vertex in $N(v) \backslash \{u\}$ and between v and every vertex in $N(u) \backslash \{v\}$.

Given any $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \ldots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there is a matrix $A \in S(G)$ such that $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(w)$.
Transfer theorems: A representative is

Theorem

Let T be a tree on $n > 2$ vertices, let u, v be adjacent vertices of T, and let w be any other vertex of T. Let G be the graph obtained from T by inserting an edge between u and every vertex in $N(v) \setminus \{u\}$ and between v and every vertex in $N(u) \setminus \{v\}$.

Given any $2n - 1$ distinct real numbers

$\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \ldots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there is a matrix $A \in S(G)$ such that $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(w)$.

Example:

```
  u -- v
    ^   |
     ^  |
    1   2
```
Transfer theorems: A representative is

Theorem

Let T be a tree on $n > 2$ vertices, let u, v be adjacent vertices of T, and let w be any other vertex of T. Let G be the graph obtained from T by inserting an edge between u and every vertex in $N(v) \setminus \{u\}$ and between v and every vertex in $N(u) \setminus \{v\}$.

Given any $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \ldots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there is a matrix $A \in S(G)$ such that $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(w)$.

Example:

![Diagram](image-url)
Proof technique

Similarity by $Q \oplus I_{n-2}$ where $Q = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$.

So we can transfer Duarte's result to many other graphs.

A major limitation is that the vertices u and v become twins in the graph G. We do not have a general technique to transfer Duarte's theorem (or any of the other inverse eigenvalue theorems for trees) if the vertices are not twins.
Proof technique

Similarity by \(Q \oplus I_{n-2} \) where \(Q = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \).

So we can transfer Duarte’s result to many other graphs.
Similarity by $Q \oplus I_{n-2}$ where $Q = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$.

So we can transfer Duarte’s result to many other graphs.

A major limitation
Similarity by $Q \oplus I_{n-2}$ where $Q = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$.

So we can transfer Duarte’s result to many other graphs.

A major limitation

The vertices u and v become twins in the graph G.
Proof technique

Similarity by $Q \oplus I_{n-2}$ where $Q = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$.

So we can transfer Duarte’s result to many other graphs.

A major limitation

The vertices u and v become twins in the graph G.

We do not have a general technique to transfer Duarte’s theorem (or any of the other inverse eigenvalue theorems for trees) if the vertices are not twins.
Problem Graphs

One encounters graphs without twins when the number of vertices is 5.

Don’t know the answers to questions 1 and 2 for these graphs.
One encounters graphs without twins when the number of vertices is 5
One encounters graphs without twins when the number of vertices is 5.
One encounters graphs without twins when the number of vertices is 5.

Don’t know the answers to questions 1 and 2 for these graphs.

- C5
- House Graph
- Bull graph
- Gem Graph
- The Bull graph