The Extended Combinatorial Inverse Eigenvalue Problem

Wayne Barrett, John Sinkovic, Curtis Nelson, Robert Yang, Nicole Malloy, William Sexton, and Anne Lazenby

July 12, 2012

Brigham Young University
Theorem

Given $2n - 1$ real numbers $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$ such that $\mu_i \neq \mu_j$ for all $i \neq j$,

there exists an $n \times n$ bordered matrix $A = \begin{bmatrix} a & b^T \\ b & M \end{bmatrix}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$,

where $M = \text{diag}(\mu_1, \mu_2, \ldots, \mu_{n-1})$.

Moreover, there is an explicit formula for a and $b^T = (b_1, b_2, \ldots, b_{n-1})$.

\[a = \text{trace } A - \text{trace } M = \lambda_1 + \lambda_2 + \cdots + \lambda_n - \mu_1 - \cdots - \mu_{n-1}. \]
Theorem

Given $2n - 1$ real numbers
Theorem

Given \(2n - 1\) real numbers

\[
\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n
\]
Theorem

Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$$

such that $\mu_i \neq \mu_j$ for all $i \neq j$,
Theorem

Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$$

such that $\mu_i \neq \mu_j$ for all $i \neq j$,

there exists an $n \times n$ bordered matrix

$$A = \begin{bmatrix} a & b^T \\ b & M \end{bmatrix}$$
Boley-Golub Theorem

Theorem

Given $2n-1$ real numbers

$$
\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n
$$

such that $\mu_i \neq \mu_j$ for all $i \neq j$,

there exists an $n \times n$ bordered matrix

$$
A = \begin{bmatrix}
a & b^T \\
b & M
\end{bmatrix}
$$

with eigenvalues $\lambda_1, \ldots, \lambda_n$.

Theorem

Given $2n - 1$ real numbers

$$
\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n
$$

such that $\mu_i \neq \mu_j$ for all $i \neq j$,

there exists an $n \times n$ bordered matrix

$$
A = \begin{bmatrix}
a & b^T \\
b & M
\end{bmatrix}
$$

with eigenvalues $\lambda_1, \ldots, \lambda_n$, where $M = \text{diag}(\mu_1, \mu_2, \ldots, \mu_{n-1})$
Boley-Golub Theorem

Theorem

Given \(2n - 1 \) real numbers

\[
\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n
\]

such that \(\mu_i \neq \mu_j \) for all \(i \neq j \),

there exists an \(n \times n \) bordered matrix

\[
A = \begin{bmatrix} a & b^T \\ b & M \end{bmatrix}
\]

with eigenvalues \(\lambda_1, \ldots, \lambda_n \), where \(M = \text{diag}(\mu_1, \mu_2, \ldots, \mu_{n-1}) \)

Moreover, there is an explicit formula for \(a \) and \(b^T = (b_1, b_2, \ldots, b_{n-1}) \).
Theorem

Given \(2n - 1\) real numbers

\[
\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n
\]

such that \(\mu_i \neq \mu_j\) for all \(i \neq j\),

there exists an \(n \times n\) bordered matrix

\[
A = \begin{bmatrix}
a & b^T \\
b & M
\end{bmatrix}
\]

with eigenvalues \(\lambda_1, \ldots, \lambda_n\), where \(M = \text{diag}(\mu_1, \mu_2, \ldots, \mu_{n-1})\)

Moreover, there is an explicit formula for \(a\) and \(b^T = (b_1, b_2, \ldots, b_{n-1})\).

\[
a = \text{trace } A - \text{trace } M
\]
Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$$

such that $\mu_i \neq \mu_j$ for all $i \neq j$,

there exists an $n \times n$ bordered matrix

$$A = \begin{bmatrix} a & b^T \\ b & M \end{bmatrix}$$

with eigenvalues $\lambda_1, \ldots, \lambda_n$, where $M = \text{diag}(\mu_1, \mu_2, \ldots, \mu_{n-1})$

Moreover, there is an explicit formula for a and $b^T = (b_1, b_2, \ldots, b_{n-1})$.

$$a = \text{trace } A - \text{trace } M = \lambda_1 + \lambda_2 + \cdots + \lambda_n - \mu_1 - \cdots - \mu_{n-1}.$$
Boley-Golub Theorem

\[b_i^2 = -\frac{\prod_{j=1}^{n} (\mu_i - \lambda_j)}{\prod_{j=1}^{n-1} (\mu_i - \mu_j)\prod_{j=1, j\neq i}^{n-1} (\mu_i - \mu_j)} \text{ for } 1 \leq i \leq n - 1. \]
Boley-Golub Theorem

\[b_i^2 = -\frac{\prod_{j=1}^{n} (\mu_i - \lambda_j)}{\prod_{j=1}^{n-1} (\mu_i - \mu_j)} \quad \text{for} \quad 1 \leq i \leq n - 1. \]

Example: \(3 > 2 > 1 > 0 > -1 > -2 > -3 \)
Boley-Golub Theorem

\[b_i^2 = -\frac{\prod_{j=1}^{n} (\mu_i - \lambda_j)}{\prod_{j=1}^{n-1} (\mu_i - \mu_j)} \text{ for } 1 \leq i \leq n - 1. \]

Example: \(3 > 2 > 1 > 0 > -1 > -2 > -3 \)

\[a = 0 \quad b_1^2 = 15/8 \quad b_2^2 = 9/4 \quad b_3^2 = 15/8 \]
Boley-Golub Theorem

\[b_i^2 = -\frac{\prod_{j=1}^{n}(\mu_i - \lambda_j)}{\prod_{j=1}^{n-1}(\mu_i - \mu_j)} \text{ for } 1 \leq i \leq n - 1. \]

Example: \(3 > 2 > 1 > 0 > -1 > -2 > -3 \)

\[a = 0 \quad b_1^2 = \frac{15}{8} \quad b_2^2 = \frac{9}{4} \quad b_3^2 = \frac{15}{8} \]

\[A = \begin{bmatrix}
0 & \sqrt{\frac{15}{8}} & 3/2 & \sqrt{\frac{15}{8}} \\
\sqrt{\frac{15}{8}} & 2 & 0 & 0 \\
3/2 & 0 & 0 & 0 \\
\sqrt{\frac{15}{8}} & 0 & 0 & -2
\end{bmatrix} \]
Boley-Golub Theorem

\[
b_i^2 = -\frac{\prod_{j=1}^{n-1} (\mu_i - \lambda_j)}{\prod_{j=1}^{n-1} (\mu_i - \mu_j)} \quad \text{for } 1 \leq i \leq n - 1.
\]

Example: \(3 > 2 > 1 > 0 > -1 > -2 > -3\)

\(a = 0 \quad b_1^2 = 15/8 \quad b_2^2 = 9/4 \quad b_3^2 = 15/8\)

\[
A = \begin{bmatrix}
0 & \sqrt{15}/8 & 3/2 & \sqrt{15}/8 \\
\sqrt{15}/8 & 2 & 0 & 0 \\
3/2 & 0 & 0 & 0 \\
\sqrt{15}/8 & 0 & 0 & -2 \\
\end{bmatrix}
\]

Evals: 3, 1, -1, -3
A common theme in inverse eigenvalue problems is to find a symmetric matrix A with a particular zero/nonzero pattern such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of A with some row and corresponding column deleted.
A common theme in inverse eigenvalue problems is to find a symmetric matrix A with a particular zero/nonzero pattern such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of A with some row and corresponding column deleted.
A common theme in inverse eigenvalue problems is to find a symmetric matrix A with a particular zero/nonzero pattern such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and

- μ_1, \ldots, μ_{n-1} are the eigenvalues of A with some row and corresponding column deleted.

A natural way to describe the zero/nonzero pattern is via an undirected graph.
Symmetric Matrix associated with a Graph

\[S_n \] - set of all \(n \times n \) real symmetric matrices
Symmetric Matrix associated with a Graph

\[S_n - \text{set of all } n \times n \text{ real symmetric matrices} \]

Given \(A \in S_n \), let \(G(A) \) be the graph with

vertex set \(V = \{1, 2, \ldots, n\} \)
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

vertex set $V = \{1, 2, \ldots, n\}$ and

edge set $E = \{\{i,j\}|a_{ij} \neq 0\}$
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

vertex set $V = \{1, 2, \ldots, n\}$ and

edge set $E = \{\{i,j\}| a_{ij} \neq 0\}$

For any graph G, let $S(G) = \{A \in S_n \mid G(A) = G\}$
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

- vertex set $V = \{1, 2, \ldots, n\}$ and
- edge set $E = \{\{i, j\} | a_{ij} \neq 0\}$

For any graph G, let $S(G) = \{A \in S_n \mid G(A) = G\}$

![Graph Diagram]
Symmetric Matrix associated with a Graph

S_n - set of all $n \times n$ real symmetric matrices

Given $A \in S_n$, let $G(A)$ be the graph with

- vertex set $V = \{1, 2, \ldots, n\}$ and
- edge set $E = \{\{i, j\} | a_{ij} \neq 0\}$

For any graph G, let $S(G) = \{A \in S_n | G(A) = G\}$

\[
A = \begin{bmatrix}
 d_1 & a & b & 0 \\
 a & d_2 & c & 0 \\
 b & c & d_3 & d \\
 0 & 0 & d & d_4 \\
\end{bmatrix} \in S(G)
\]
Symmetric Matrix associated with a Graph

\(S_n \) - set of all \(n \times n \) real symmetric matrices

Given \(A \in S_n \), let \(G(A) \) be the graph with

- vertex set \(V = \{1, 2, \ldots, n\} \) and
- edge set \(E = \{\{i, j\} | a_{ij} \neq 0\} \)

For any graph \(G \), let \(S(G) = \{A \in S_n \mid G(A) = G\} \)

\[A = \begin{bmatrix} d_1 & a & b & 0 \\ a & d_2 & c & 0 \\ b & c & d_3 & d \\ 0 & 0 & d & d_4 \end{bmatrix} \in S(G) \]
Symmetric Matrix associated with a Graph

\[S_n - \text{set of all } n \times n \text{ real symmetric matrices} \]

Given \(A \in S_n \), let \(G(A) \) be the graph with

- vertex set \(V = \{1, 2, \ldots, n\} \) and
- edge set \(E = \{\{i,j\} | a_{ij} \neq 0\} \)

For any graph \(G \), let \(S(G) = \{A \in S_n | G(A) = G\} \)

\[
A = \begin{bmatrix}
d_1 & a & b & 0 \\
a & d_2 & c & 0 \\
b & c & d_3 & d \\
0 & 0 & d & d_4 \\
\end{bmatrix} \in S(G)
\]
Example: $S_n = K_{1,n-1}$

\[A = \begin{bmatrix}
 d_1 & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & d_2 & 0 & \cdots & 0 \\
 a_{31} & 0 & d_3 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & 0 & 0 & \cdots & d_n
\end{bmatrix} \in S_n(S_n) \]
Example: \(S_n = K_{1,n-1} \)
Definition

A graph T is a tree if
Definition

A graph T is a tree if

- T is connected
Definition

A graph T is a tree if

- T is connected
- T contains no cycle
A graph \(T \) is a tree if

- \(T \) is connected
- \(T \) contains no cycle
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of T. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$. The theorem actually says more: If the degree of vertex v is greater than 1, the eigenvalues μ_1, \ldots, μ_{n-1} can be distributed in any way among the branches of $T - v$.

There are more results on the inverse eigenvalue problem for trees than other types of graphs.
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of T. Given $2n - 1$ distinct real numbers \(\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n\), there exists a matrix $A \in S(T)$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$. The theorem actually says more: if the degree of vertex v is greater than 1, the eigenvalues μ_1, \ldots, μ_{n-1} can be distributed in any way among the branches of $T - v$.

There are more results on the inverse eigenvalue problem for trees than other types of graphs.
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of T. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of T. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of T. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

The theorem actually says more:
Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of T. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

The theorem actually says more:
If the degree of vertex v is greater than 1, the eigenvalues μ_1, \ldots, μ_{n-1} can be distributed in any way among the branches of $T - v$.
Inverse Eigenvalue Problem for Trees

Theorem (Duarte’s Theorem)

Let T be a tree on n vertices and let v be a vertex of T. Given $2n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, there exists a matrix $A \in S(T)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

The theorem actually says more:
If the degree of vertex v is greater than 1, the eigenvalues μ_1, \ldots, μ_{n-1} can be distributed in any way among the branches of $T - v$.

There are more results on the inverse eigenvalue problem for trees than other types of graphs.
The λ, μ Problem

Question

Given a graph G on n vertices

A complete answer cannot be given even for most trees, but can be given for complete graphs.
The λ, μ Problem

Question

Given a graph G on n vertices and numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

is there an $A \in \mathcal{S}(G)$ such that the λ_i's are the eigenvalues of A and the μ_i's are the eigenvalues of $A(v)$, where v is a vertex of G?

A complete answer cannot be given even for most trees, but can be given for complete graphs.
The λ, μ Problem

Question

Given a graph G on n vertices and numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

is there an $A \in S(G)$ such that

...
The λ, μ Problem

Question

Given a graph G on n vertices and numbers

\[\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n, \]

is there an $A \in \mathcal{S}(G)$ such that

- the λ_i’s are the eigenvalues of A
The λ, μ Problem

Question

Given a graph G on n vertices and numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

is there an $A \in S(G)$ such that

- the λ_i's are the eigenvalues of A and
- the μ_i's are the eigenvalues of $A(v)$, where v is a vertex of G?

A complete answer cannot be given even for most trees, but can be given for complete graphs.

Wayne Barrett (BYU)
Inverse Eigenvalue Problem for Graphs
July 12, 2012 11 / 25
The λ, μ Problem

Question

Given a graph G on n vertices and numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

is there an $A \in S(G)$ such that

- the λ_i's are the eigenvalues of A and
- the μ_i's are the eigenvalues of $A(v)$, where v is a vertex of G?

A complete answer cannot be given even for most trees,
The λ, μ Problem

Question

Given a graph G on n vertices and numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

is there an $A \in S(G)$ such that

- the λ_i's are the eigenvalues of A and
- the μ_i's are the eigenvalues of $A(v)$, where v is a vertex of G?

A complete answer cannot be given even for most trees, but can be given for complete graphs.
Complete Graphs

Definition

A graph is complete if every pair of vertices is adjacent.
Complete Graphs

Definition

A graph is complete if every pair of vertices is adjacent. A complete graph on n vertices is denoted K_n.

A matrix $\begin{pmatrix} a & u & v & w \\ u & b & x & y \\ v & x & c & z \\ w & y & z & d \end{pmatrix} \in S(K_4)$ provided $uvwxyz \neq 0$.

Wayne Barrett (BYU)
Inverse Eigenvalue Problem for Graphs
July 12, 2012 12 / 25
A graph is complete if every pair of vertices is adjacent. A complete graph on \(n \) vertices is denoted \(K_n \).
Complete Graphs

Definition

A graph is complete if every pair of vertices is adjacent. A complete graph on \(n \) vertices is denoted \(K_n \).

\[
\begin{bmatrix}
 a & u & v & w \\
 u & b & x & y \\
 v & x & c & z \\
 w & y & z & d \\
\end{bmatrix} \in S(K_4) \text{ provided } uvwxyz \neq 0.
\]
Solution of the λ, μ Problem for K_n

Given $2^n - 1$ real numbers $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, there exists $A \in S(K_n)$ such that λ_i's are the eigenvalues of A and μ_i's are the eigenvalues of $A(v)$, where v is a vertex of K_n, if and only if $\mu_1 > \mu_{n-1}$ and the multiset \{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \not\subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$.

$n = 4$:

Yes $2 = 2 > 1 > 0 > -1 > -2 > -3$

No $1 > 0 = 0 > -2 = -2$

No Way
Given 2n – 1 real numbers

\[\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n, \]
Solution of the λ, μ Problem for K_n

Theorem

*Given $2n - 1$ real numbers

\[\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n, \]

there exists $A \in S(K_n)$ such that

- λ_i’s are the eigenvalues of A*
Solution of the λ, μ Problem for K_n

Theorem

Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

there exists $A \in S(K_n)$ such that

- λ_i's are the eigenvalues of A and
- μ_i's are the eigenvalues of $A(v)$, where v is a vertex of K_n,

if and only if

$\mu_1 > \mu_{n-1}$ and the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\}$ does not belong to $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$.
Solution of the λ, μ Problem for K_n

Theorem

Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

there exists $A \in S(K_n)$ such that

- λ_i’s are the eigenvalues of A and
- μ_i’s are the eigenvalues of $A(v)$, where v is a vertex of K_n.

if and only if $\mu_1 > \mu_{n-1}$
Solution of the λ, μ Problem for K_n

Theorem

Given $2n - 1$ real numbers

$$
\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,
$$

there exists $A \in S(K_n)$ such that

- λ_i’s are the eigenvalues of A and
- μ_i’s are the eigenvalues of $A(v)$, where v is a vertex of K_n,

if and only if

$\mu_1 > \mu_{n-1}$ and the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \not\subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$.
Theorem

Given \(2n - 1 \) real numbers

\[
\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,
\]

there exists \(A \in S(K_n) \) such that

- \(\lambda_i \)'s are the eigenvalues of \(A \) and
- \(\mu_i \)'s are the eigenvalues of \(A(\nu) \), where \(\nu \) is a vertex of \(K_n \),

if and only if

\(\mu_1 > \mu_{n-1} \) and the multiset \(\{ \mu_1, \mu_2, \ldots, \mu_{n-1} \} \nsubseteq \{ \lambda_1, \lambda_2, \ldots, \lambda_n \} \).

\(n = 4 \): \(3 > 2 > 1 > 0 > -1 > -2 > -3 \)
Solution of the λ, μ Problem for K_n

Theorem

*Given 2n – 1 real numbers

\[\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n, \]

there exists $A \in S(K_n)$ such that

- λ_i's are the eigenvalues of A and
- μ_i's are the eigenvalues of $A(v)$, where v is a vertex of K_n,

if and only if

$\mu_1 > \mu_{n-1}$ and the multiset \{\mu_1, \mu_2, \ldots, \mu_{n-1}\} $\not\subseteq$ \{\lambda_1, \lambda_2, \ldots, \lambda_n\}.

$n = 4$: $3 > 2 > 1 > 0 > -1 > -2 > -3$ Yes
Solution of the λ, μ Problem for K_n

Theorem

Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

there exists $A \in S(K_n)$ such that

- λ_i’s are the eigenvalues of A and
- μ_i’s are the eigenvalues of $A(v)$, where v is a vertex of K_n,

if and only if

$\mu_1 > \mu_{n-1}$ and the multiset \{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \not\subset \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$.

$n = 4$: \[3 > 2 > 1 > 0 > -1 > -2 > -3 \quad \text{Yes}\]
\[2 = 2 > 1 > 0 = 0 > -2 = -2\]
Solution of the λ, μ Problem for K_n

Theorem

Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

there exists $A \in S(K_n)$ *such that*

- λ_i's are the eigenvalues of A and
- μ_i's are the eigenvalues of $A(v)$, where v is a vertex of K_n,

if and only if

$\mu_1 > \mu_{n-1}$ and the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \nsubseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$.

$n = 4$: $3 > 2 > 1 > 0 > -1 > -2 > -3$ Yes

$2 = 2 > 1 > 0 = 0 > -2 = -2$ No
Solution of the λ, μ Problem for K_n

Theorem

Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

there exists $A \in S(K_n)$ such that

- λ_i's are the eigenvalues of A and
- μ_i's are the eigenvalues of $A(v)$, where v is a vertex of K_n,

if and only if

$\mu_1 > \mu_{n-1}$ and the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \not\subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$.

$n = 4$: \[3 > 2 > 1 > 0 > -1 > -2 > -3\] Yes

2 = 2 > 1 > 0 = 0 > -2 = -2 No

1 > 0 = 0 = 0 = 0 = 0 > -1
Solution of the λ, μ Problem for K_n

Given $2n - 1$ real numbers

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n,$$

there exists $A \in S(K_n)$ such that

- λ_i’s are the eigenvalues of A and
- μ_i’s are the eigenvalues of $A(v)$, where v is a vertex of K_n,

if and only if

$\mu_1 > \mu_{n-1}$ and the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \nsubseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$.

$n = 4$: $3 > 2 > 1 > 0 > -1 > -2 > -3$ Yes

$2 = 2 > 1 > 0 = 0 > -2 = -2$ No

$1 > 0 = 0 = 0 = 0 = 0 > -1$ No
First Necessary Condition

Observation

Assume $A \in S_n$ has eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and $A(v)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$.
First Necessary Condition

Observation

Assume $A \in S_n$ has eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and $A(v)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$. If $\mu_1 = \mu_{n-1}$, then $A(v)$ is a scalar matrix.

Proof: $A(v)$ is symmetric and all eigenvalues are equal.

Corollary

If $A \in S(G)$ and $A(v)$ has eigenvalues $\mu_1 = \cdots = \mu_{n-1}$, then $G-v$ consists of isolated vertices.
Observation

Assume $A \in S_n$ has eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and $A(v)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$. If $\mu_1 = \mu_{n-1}$, then $A(v)$ is a scalar matrix.

Proof: $A(v)$ is symmetric and all eigenvalues are equal.
First Necessary Condition

Observation

Assume $A \in S_n$ has eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and $A(v)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$. If $\mu_1 = \mu_{n-1}$, then $A(v)$ is a scalar matrix.

Proof: $A(v)$ is symmetric and all eigenvalues are equal.

Corollary

If $A \in S(G)$ and $A(v)$ has eigenvalues $\mu_1 = \cdots = \mu_{n-1}$, then $G - v$ consists of isolated vertices.
Second Necessary Condition

Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$. Then $A = a_{11} \oplus B$.

Proof: By hypothesis, the eigenvalues of A are $\lambda_k, \mu_1, \cdots, \mu_{n-1}$ for some k. So $a_{11} = \text{trace } A - \text{trace } B = \lambda_k$.

2 × 2 minors:

$$E_2(A) - E_2(B) = \sum_{i=2}^{n} (a_{11}a_{ii} - a_{i1}a_{1i}) = \lambda_k \text{trace } B - \sum_{i=2}^{n} a_{21}a_{1i}$$
Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n−1}$.

If the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n−1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$,
Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$.

If the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then $A = a_{11} \oplus B$.
Second Necessary Condition

Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$.

If the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then $A = a_{11} \oplus B$.

Proof: By hypothesis, the eigenvalues of A are $\lambda_k, \mu_1, \ldots, \mu_{n-1}$ for some k.
Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$.

If the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then $A = a_{11} \oplus B$.

Proof: By hypothesis, the eigenvalues of A are $\lambda_k, \mu_1, \cdots, \mu_{n-1}$ for some k.

So $a_{11} = \text{trace } A - \text{trace } B = \lambda_k$.

Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$.

If the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then $A = a_{11} \oplus B$.

Proof: By hypothesis, the eigenvalues of A are $\lambda_k, \mu_1, \ldots, \mu_{n-1}$ for some k.

So $a_{11} = \text{trace } A - \text{trace } B = \lambda_k$.

2×2 minors:

$$E_2(A) - E_2(B)$$
Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$.

If the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then $A = a_{11} \oplus B$.

Proof: By hypothesis, the eigenvalues of A are $\lambda_k, \mu_1, \ldots, \mu_{n-1}$ for some k.

So $a_{11} = \text{trace } A - \text{trace } B = \lambda_k$.

2×2 minors:

$$E_2(A) - E_2(B) = \sum_{i=2}^{n} (a_{11}a_{ii} - a_{i1}a_{1i})$$
Second Necessary Condition

Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$.

If the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then $A = a_{11} \oplus B$.

Proof: By hypothesis, the eigenvalues of A are $\lambda_k, \mu_1, \cdots, \mu_{n-1}$ for some k.

So $a_{11} = \text{trace } A - \text{trace } B = \lambda_k$.

2 × 2 minors:

$$E_2(A) - E_2(B) = \sum_{i=2}^{n} (a_{11}a_{ii} - a_{i1}a_{1i})$$

$$= \sum_{i=2}^{n} a_{11}a_{ii} - \sum_{i=2}^{n} a_{i1}a_{1i}$$
Theorem

Let $A \in S_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose that $B = A(1)$ has eigenvalues $\mu_1 \geq \cdots \geq \mu_{n-1}$.

If the multiset $\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then $A = a_{11} \oplus B$.

Proof: By hypothesis, the eigenvalues of A are $\lambda_k, \mu_1, \cdots, \mu_{n-1}$ for some k.

So $a_{11} = \text{trace } A - \text{trace } B = \lambda_k$.

2×2 minors:

$$E_2(A) - E_2(B) = \sum_{i=2}^{n}(a_{11}a_{ii} - a_{i1}a_{1i})$$

$$= \sum_{i=2}^{n} a_{11}a_{ii} - \sum_{i=2}^{n} a_{i1}a_{1i} = \lambda_k \text{ trace } B - \sum_{i=2}^{n} a_{1i}^2$$
Second Necessary Condition

\[\lambda_k \text{trace } B - \sum_{i=2}^{n} a_{1i}^2 = \text{E}_2(A) - \text{E}_2(B) \]
Second Necessary Condition

\[
\lambda_k \text{ trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j
\]
Second Necessary Condition

\[
\lambda_k \text{ trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j
\]

\[
= \sum_{i \neq k} \lambda_k \lambda_i
\]
Second Necessary Condition

\[\lambda_k \text{trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j \]

\[= \sum_{i \neq k} \lambda_k \lambda_i = \lambda_k \text{trace } B. \]
Second Necessary Condition

\[\lambda_k \text{trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j \]

\[= \sum_{i \neq k} \lambda_k \lambda_i = \lambda_k \text{trace } B. \]

Thus \[\sum_{i=2}^{n} a_{1i}^2 = 0 \]
Second Necessary Condition

\[\lambda_k \text{trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j \]

\[= \sum_{i \neq k} \lambda_k \lambda_i = \lambda_k \text{trace } B. \]

Thus \[\sum_{i=2}^{n} a_{1i}^2 = 0 \Rightarrow a_{1i} = 0 \text{ for all } i \]
Second Necessary Condition

\[\lambda_k \text{trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j \]

\[= \sum_{i \neq k} \lambda_k \lambda_i = \lambda_k \text{trace } B. \]

Thus \(\sum_{i=2}^{n} a_{1i}^2 = 0 \Rightarrow a_{1i} = 0 \) for all \(i \Rightarrow A = a_11 \oplus B. \)
Second Necessary Condition

\[\lambda_k \text{trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j \]

\[= \sum_{i \neq k} \lambda_k \lambda_i = \lambda_k \text{trace } B. \]

Thus \(\sum_{i=2}^{n} a_{1i}^2 = 0 \Rightarrow a_{1i} = 0 \text{ for all } i \Rightarrow A = a_{11} \oplus B. \)

Corollary

Assume \(A \in S(G) \) has eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \) and \(A(v) \) has eigenvalues \(\mu_1, \ldots, \mu_{n-1} \).
Second Necessary Condition

\[\lambda_k \text{ trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j \]

\[= \sum_{i \neq k} \lambda_k \lambda_i = \lambda_k \text{ trace } B. \]

Thus \(\sum_{i=2}^{n} a_{1i}^2 = 0 \Rightarrow a_{1i} = 0 \text{ for all } i \Rightarrow A = a_{11} \oplus B. \)

Corollary

Assume \(A \in S(G) \) has eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \) and \(A(\nu) \) has eigenvalues \(\mu_1, \ldots, \mu_{n-1} \). If the multiset \(\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\} \),
Second Necessary Condition

\[
\lambda_k \text{ trace } B - \sum_{i=2}^{n} a_{1i}^2 = E_2(A) - E_2(B) = \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j - \sum_{1 \leq i < j \leq n-1} \mu_i \mu_j \\
= \sum_{i \neq k} \lambda_k \lambda_i = \lambda_k \text{ trace } B.
\]

Thus \(\sum_{i=2}^{n} a_{1i}^2 = 0 \Rightarrow a_{1i} = 0 \) for all \(i \Rightarrow A = a_{11} \oplus B. \)

Corollary

Assume \(A \in S(G) \) has eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \) and \(A(\nu) \) has eigenvalues \(\mu_1, \ldots, \mu_{n-1} \). If the multiset \(\{\mu_1, \mu_2, \ldots, \mu_{n-1}\} \subseteq \{\lambda_1, \lambda_2, \ldots, \lambda_n\} \), then \(\nu \) is an isolated vertex of \(G \).
Sufficiency

Two of the key components
Sufficiency

Two of the key components

Theorem (Boley-Golub)

Given $2n - 1$ real numbers

\[\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n \]

such that $\mu_i \neq \mu_j$ for all $i \neq j$, there exists an $n \times n$ bordered matrix

\[A = \begin{bmatrix} a & b^T \\ b & M \end{bmatrix} \]

with eigenvalues $\lambda_1, \ldots, \lambda_n$, where $M = \text{diag}(\mu_1, \mu_2, \ldots, \mu_{n-1})$
Sufficiency

Two of the key components

Theorem (Boley-Golub)

Given $2n - 1$ real numbers

$$
\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n
$$

such that $\mu_i \neq \mu_j$ for all $i \neq j$, there exists an $n \times n$ bordered matrix

$$
A = \begin{bmatrix}
a & b^T \\
b & M
\end{bmatrix}
$$

with eigenvalues $\lambda_1, \ldots, \lambda_n$, where $M = \text{diag}(\mu_1, \mu_2, \ldots, \mu_{n-1})$

Lemma

Let $n \geq 2$. Let D be an $n \times n$ diagonal matrix whose diagonal entries are not all equal. Then there exists an $n \times n$ orthogonal matrix Q such that $Q^T D Q \in S(K_n)$.
Proof Outline for Sufficiency via an Example

\[G = K_6 \]
Proof Outline for Sufficiency via an Example

\[G = K_6 \]

\[3 \geq 2 \geq 2 \geq 1 \geq 1 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3 \]
Proof Outline for Sufficiency via an Example

$G = K_6$

$$3 \geq 2 \geq 2 \geq 1 \geq 1 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3$$

taking out $\{1, 1\}$:

$$3 \geq 2 \geq 2 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3, \quad \{1, 1\}$$
Proof Outline for Sufficiency via an Example

\[G = K_6 \]

\[3 \geq 2 \geq 2 \geq 1 \geq 1 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3 \]

taking out \(\{1, 1\} \):

\[3 \geq 2 \geq 2 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3, \quad \{1, 1\} \]

taking out \(\{-2, -2\} \):

\[3 \geq 2 \geq 2 \geq 1 \geq -1 \geq -2 \geq -3, \quad \{1, 1\}, \quad \{-2, -2\} \]
Proof Outline via an Example

\[3 \geq 2 \geq 2 \geq 1 \geq -1 \geq -2 \geq -3 \]
Proof Outline via an Example

\[3 \geq 2 \geq 2 \geq 1 \geq -1 \geq -2 \geq -3 \]

\[
A = \begin{bmatrix}
a & b_1 & b_2 & b_3 \\
b_1 & 2 & 0 & 0 \\
b_2 & 0 & 1 & 0 \\
b_3 & 0 & 0 & -2 \\
\end{bmatrix}
\]

by Boley-Golub
3 ≥ 2 ≥ 2 ≥ 1 ≥ −1 ≥ −2 ≥ −3

\[A = \begin{bmatrix} a & b_1 & b_2 & b_3 \\ b_1 & 2 & 0 & 0 \\ b_2 & 0 & 1 & 0 \\ b_3 & 0 & 0 & -2 \end{bmatrix} \text{ by Boley-Golub} \]

\{2, 1, -2\} \not\subset \{3, 2, -1, -3\}
$3 \geq 2 \geq 2 \geq 1 \geq -1 \geq -2 \geq -3$

$$A = \begin{bmatrix} a & b_1 & b_2 & b_3 \\ b_1 & 2 & 0 & 0 \\ b_2 & 0 & 1 & 0 \\ b_3 & 0 & 0 & -2 \end{bmatrix} \text{ by Boley-Golub}$$

$\{2, 1, -2\} \not\subset \{3, 2, -1, -3\} \implies b_1, b_2, b_3$ not all zero.
Proof Outline via an Example

\[3 \geq 2 \geq 2 \geq 1 \geq -1 \geq -2 \geq -3 \]

\[
A = \begin{bmatrix}
 a & b_1 & b_2 & b_3 \\
 b_1 & 2 & 0 & 0 \\
 b_2 & 0 & 1 & 0 \\
 b_3 & 0 & 0 & -2
\end{bmatrix}
\]

by Boley-Golub

\{2, 1, -2\} \not\subseteq \{3, 2, -1, -3\} \implies b_1, b_2, b_3 \text{ not all zero.}

\{1, 1\}, \{-2, -2\}
Proof Outline via an Example

\[3 \geq 2 \geq 2 \geq 1 \geq -1 \geq -2 \geq -3 \]

\[
A = \begin{bmatrix}
 a & b_1 & b_2 & b_3 \\
 b_1 & 2 & 0 & 0 \\
 b_2 & 0 & 1 & 0 \\
 b_3 & 0 & 0 & -2
\end{bmatrix}
\]

by Boley-Golub

\{2, 1, -2\} \not\subseteq \{3, 2, -1, -3\} \implies b_1, b_2, b_3 \text{ not all zero.}

\{1, 1\}, \{-2, -2\}

\[
B = \begin{bmatrix}
 1 & 0 \\
 0 & -2
\end{bmatrix}
\]
Direct sum of A and B:

\[
A \oplus B = \begin{bmatrix}
a & b_1 & b_2 & b_3 & 0 & 0 \\
b_1 & 2 & 0 & 0 & 0 & 0 \\
b_2 & 0 & 1 & 0 & 0 & 0 \\
b_3 & 0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -2
\end{bmatrix}
\]
Proof Outline via an Example

Direct sum of A and B:

$$
A \oplus B = \begin{bmatrix}
 a & b_1 & b_2 & b_3 & 0 & 0 \\
 b_1 & 2 & 0 & 0 & 0 & 0 \\
 b_2 & 0 & 1 & 0 & 0 & 0 \\
 b_3 & 0 & 0 & -2 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & -2
\end{bmatrix}
$$

$A \oplus B$ solves the λ, μ problem for

$$
3 \geq 2 \geq 2 \geq 1 \geq 1 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3.
$$
Direct sum of A and B:

$$
A \oplus B = \begin{bmatrix}
 a & b_1 & b_2 & b_3 & 0 & 0 \\
 b_1 & 2 & 0 & 0 & 0 & 0 \\
 b_2 & 0 & 1 & 0 & 0 & 0 \\
 b_3 & 0 & 0 & -2 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & -2
\end{bmatrix}
$$

$A \oplus B$ solves the λ, μ problem for

$$3 \geq 2 \geq 2 \geq 1 \geq 1 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3.$$

Let D be the diagonal matrix obtained by deleting the first row and column of $A \oplus B$.

Wayne Barrett (BYU)
Inverse Eigenvalue Problem for Graphs
July 12, 2012 20 / 25
Proof Outline via an Example

Let $D = \text{Diag} \ (2, 1, -2, 1, -2)$.
Proof Outline via an Example

Let $D = \text{Diag} (2, 1, -2, 1, -2)$.

By the Lemma, there exists an orthogonal matrix Q of order 5 such that $E = Q^T D Q \in S(K_5)$.

Let $D = \text{Diag} (2, 1, -2, 1, -2)$.

By the Lemma, there exists an orthogonal matrix Q of order 5 such that $E = Q^T D Q \in S(K_5)$.

Let $C = ([1] \oplus Q^T)(A \oplus B)([1] \oplus Q)$.
Proof Outline via an Example

Let $D = \text{Diag}(2, 1, -2, 1, -2)$.

By the Lemma, there exists an orthogonal matrix Q of order 5 such that $E = Q^T D Q \in S(K_5)$.

Let $C = ([1] \oplus Q^T)(A \oplus B)([1] \oplus Q)$

$$C = (1 \oplus Q^T) \begin{bmatrix} a & b_1 & b_2 & b_3 & 0 & 0 \\ b_1 & 2 & 0 & 0 & 0 & 0 \\ b_2 & 0 & 1 & 0 & 0 & 0 \\ b_3 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 \end{bmatrix} ([1] \oplus Q)$$
Proof Outline via an Example

Let \(D = \text{Diag} \left(2, 1, -2, 1, -2 \right) \).

By the Lemma, there exists an orthogonal matrix \(Q \) of order 5 such that \(E = Q^T D Q \in S(K_5) \).

Let \(C = ([1] \oplus Q^T)(A \oplus B)([1] \oplus Q) \)

\[
\begin{bmatrix}
 a & b_1 & b_2 & b_3 & 0 & 0 \\
 b_1 & 2 & 0 & 0 & 0 & 0 \\
 b_2 & 0 & 1 & 0 & 0 & 0 \\
 b_3 & 0 & 0 & -2 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & -2 \\
\end{bmatrix}
\]

\((1 \oplus Q^T)([1] \oplus Q) = \begin{bmatrix} a & b^T \\ b & E \end{bmatrix} \).
Let $D = \text{Diag}(2, 1, -2, 1, -2)$.

By the Lemma, there exists an orthogonal matrix Q of order 5 such that $E = Q^T D Q \in S(K_5)$.

Let $C = ([1] \oplus Q^T)(A \oplus B)([1] \oplus Q)$

\[
\begin{bmatrix}
 a & b_1 & b_2 & b_3 & 0 & 0 \\
 b_1 & 2 & 0 & 0 & 0 & 0 \\
 b_2 & 0 & 1 & 0 & 0 & 0 \\
 b_3 & 0 & 0 & -2 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & -2
\end{bmatrix}
\]

C solves the λ, μ problem for

\[3 \geq 2 \geq 2 \geq 1 \geq 1 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3.\]
Proof Outline via an Example

Let \(D = \text{Diag} (2, 1, -2, 1, -2) \).

By the Lemma, there exists an orthogonal matrix \(Q \) of order 5 such that \(E = Q^T D Q \in S(K_5) \).

Let \(C = ([1] \oplus Q^T)(A \oplus B)([1] \oplus Q) \)

\[
= (1 \oplus Q^T) \begin{bmatrix}
 a & b_1 & b_2 & b_3 & 0 & 0 \\
 b_1 & 2 & 0 & 0 & 0 & 0 \\
 b_2 & 0 & 1 & 0 & 0 & 0 \\
 b_3 & 0 & 0 & -2 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & -2
\end{bmatrix}
\]

\(([1] \oplus Q) = \begin{bmatrix}
 a & b^T \\
 b & E
\end{bmatrix} \).

\(C \) solves the \(\lambda, \mu \) problem for

\[
3 \geq 2 \geq 2 \geq 1 \geq 1 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3.
\]

and \(b \neq 0 \).
Final step: Let \(Q_2 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \)
Final step: Let \(Q_2 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \)

Choose \(\theta \) such that \(K = (Q_2^T \oplus I_{n-2}) \begin{bmatrix} a \\ b \\ E \end{bmatrix} (Q_2 \oplus I_{n-2}) \) has all non-zero off-diagonal entries.
Final step: Let \(Q_2 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \)

Choose \(\theta \) such that \(K = (Q_2^T \oplus I_{n-2}) \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} b^T \\ E \end{bmatrix} \) \((Q_2 \oplus I_{n-2})\) has all non-zero off-diagonal entries.

It seems reasonable that this can be done, but it takes some work to show it.
Final step: Let \(Q_2 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \)

Choose \(\theta \) such that \(K = (Q_2^T \oplus I_{n-2}) \begin{bmatrix} a \\ b \\ E \end{bmatrix} (Q_2 \oplus I_{n-2}) \) has all non-zero off-diagonal entries.

It seems reasonable that this can be done, but it takes some work to show it.

Then \(K \in S(K_6) \) solves the \(\lambda, \mu \) problem for

\[3 \geq 2 \geq 2 \geq 1 \geq 1 \geq -1 \geq -2 \geq -2 \geq -2 \geq -3. \]
Q1. Let G be any connected graph on n vertices and let v be any vertex of G. Given $2^n - 1$ distinct real numbers $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n$, is there a matrix $A \in S(G)$ such that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$? It's true for all connected graphs on $n \leq 4$ vertices by construction.

Q2. Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, let G be any graph on n vertices, let v be any vertex of G, and let H be a graph obtained from G by inserting one additional edge. If there exists a matrix $A \in S(G)$ such that the λ_i's are the eigenvalues of A and the μ_i's are the eigenvalues of $A(v)$, is there a matrix $B \in S(H)$ such that the λ_i's are the eigenvalues of B and the μ_i's are the eigenvalues of $B(v)$?
Open Questions

Q1. Let G be any connected graph on n vertices and let v be any vertex of G. Given $2n-1$ distinct real numbers

$$\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n,$$

is there a matrix $A \in S(G)$ such that λ_i's are the eigenvalues of A and μ_i's are the eigenvalues of $A(v)$?

It's true for all connected graphs on $n \leq 4$ vertices by construction.

Q2. Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, let G be any graph on n vertices, let v be any vertex of G, and let H be a graph obtained from G by inserting one additional edge. If there exists a matrix $A \in S(G)$ such that the λ_i's are the eigenvalues of A and the μ_i's are the eigenvalues of $A(v)$, is there a matrix $B \in S(H)$ such that the λ_i's are the eigenvalues of B and the μ_i's are the eigenvalues of $B(v)$?
Open Questions

Q1. Let G be any connected graph on n vertices and let v be any vertex of G. Given $2n - 1$ distinct real numbers

$$\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n,$$

is there a matrix $A \in S(G)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.
Open Questions

Q1. Let G be any connected graph on n vertices and let v be any vertex of G. Given $2n - 1$ distinct real numbers

$$
\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n,
$$
is there a matrix $A \in S(G)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

It’s true for all connected graphs on $n \leq 4$ vertices by construction.
Q1. Let G be any connected graph on n vertices and let v be any vertex of G. Given $2n - 1$ distinct real numbers

$$\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n,$$

is there a matrix $A \in S(G)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

It’s true for all connected graphs on $n \leq 4$ vertices by construction.

Q2. Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, let G be any graph on n vertices, let v be any vertex of G,
Open Questions

Q1. Let G be any connected graph on n vertices and let v be any vertex of G. Given $2n - 1$ distinct real numbers

$$
\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n,
$$
is there a matrix $A \in S(G)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

It’s true for all connected graphs on $n \leq 4$ vertices by construction.

Q2. Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, let G be any graph on n vertices, let v be any vertex of G, and let H be a graph obtained from G by inserting one additional edge.
Open Questions

Q1. Let G be any connected graph on n vertices and let v be any vertex of G. Given $2n-1$ distinct real numbers

$$\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n,$$

is there a matrix $A \in S(G)$ such that

- $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

It’s true for all connected graphs on $n \leq 4$ vertices by construction.

Q2. Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, let G be any graph on n vertices, let v be any vertex of G, and let H be a graph obtained from G by inserting one additional edge. If there exists a matrix $A \in S(G)$ such that the λ_i’s are the eigenvalues of A and the μ_i’s are the eigenvalues of $A(v)$,
Open Questions

Q1. Let G be any connected graph on n vertices and let v be any vertex of G. Given $2n - 1$ distinct real numbers

$$\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \lambda_{n-1} > \mu_{n-1} > \lambda_n,$$

is there a matrix $A \in S(G)$ such that

- $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A and
- μ_1, \ldots, μ_{n-1} are the eigenvalues of $A(v)$.

It’s true for all connected graphs on $n \leq 4$ vertices by construction.

Q2. Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, let G be any graph on n vertices, let v be any vertex of G, and let H be a graph obtained from G by inserting one additional edge.

If there exists a matrix $A \in S(G)$ such that the λ_i's are the eigenvalues of A and the μ_i's are the eigenvalues of $A(v)$,

is there a matrix $B \in S(H)$ such that the λ_i's are the eigenvalues of B and the μ'_i's are the eigenvalues of $B(v)$?
Q3. Given \(\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n \), a graph \(G \) on \(n \) vertices, and a vertex \(v \) of \(G \), is there an \(A \in S(G) \) solving the \(\lambda, \mu \) problem?

Even for small graphs the answer to this question can be complicated.
Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex.

There exists $A \in S(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if all inequalities are strict.

Exactly one of the inequalities is an equality and $\lambda_2 > \mu_2 > \lambda_3$.

One of the following holds:

1. $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \lambda_3 = \mu_3 = \lambda_4$,
2. $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 = \lambda_3 = \mu_3 > \lambda_4$,
3. $\lambda_1 > \mu_1 = \lambda_2 = \mu_2 > \lambda_3 > \mu_3 > \lambda_4$,
4. $\lambda_1 = \mu_1 = \lambda_2 > \mu_2 > \lambda_3 > \mu_3 > \lambda_4$ and $\lambda_1 + \lambda_4 \neq \mu_1 + \mu_3$.

μ_2 is the only equality and $\mu_2 \neq \mu_1 \mu_3$.

Wayne Barrett (BYU)
Inverse Eigenvalue Problem for Graphs
July 12, 2012 25 / 25
Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex. There exists $A \in S(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if

1. All inequalities are strict.
2. Exactly one of the inequalities is an equality and $\lambda_2 > \mu_2 > \lambda_3$.
3. One of the following holds:
 - $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \lambda_3 = \mu_3 = \lambda_4$,
 - $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 = \lambda_3 = \mu_3 > \lambda_4$,
 - $\lambda_1 > \mu_1 = \lambda_2 = \mu_2 > \lambda_3 > \mu_3 > \lambda_4$,
 - $\lambda_1 = \mu_1 = \lambda_2 > \mu_2 > \lambda_3 > \mu_3 > \lambda_4$ and $\lambda_1 + \lambda_4 \neq \mu_1 + \mu_3$.
4. $\mu_2 = \lambda_3$ is the only equality and $\mu_2 \neq \mu_1 \mu_3$.

\[\lambda_1 - \lambda_2 \lambda_4 (\lambda_1 - \mu_1) (\mu_1 - \lambda_2) + (\lambda_1 - \mu_1)(\mu_3 - \lambda_4) + (\lambda_2 - \mu_3)(\mu_3 - \lambda_4) = 0.\]
Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex. There exists $A \in S(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if

- all inequalities are strict.
Paw/pendant vertex theorem

Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex. There exists $A \in S(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if

- all inequalities are strict.
- exactly one of the inequalities is an equality and $\lambda_2 > \mu_2 > \lambda_3$.

\[\text{Wayne Barrett (BYU)} \]
\[\text{Inverse Eigenvalue Problem for Graphs} \]
\[\text{July 12, 2012 25 / 25} \]
Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex. There exists $A \in \mathcal{S}(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if

- all inequalities are strict.
- exactly one of the inequalities is an equality and $\lambda_2 > \mu_2 > \lambda_3$.
- One of the following holds: $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \lambda_3 = \mu_3 = \lambda_4$, $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 = \lambda_3 = \mu_3 > \lambda_4$, $\lambda_1 > \mu_1 = \lambda_2 = \mu_2 > \lambda_3 > \mu_3 > \lambda_4$, or $\lambda_1 = \mu_1 = \lambda_2 > \mu_2 > \lambda_3 > \mu_3 > \lambda_4$.
Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex. There exists $A \in S(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if

- all inequalities are strict.
- exactly one of the inequalities is an equality and $\lambda_2 > \mu_2 > \lambda_3$.
- One of the following holds: $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \lambda_3 = \mu_3 = \lambda_4$, $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 = \lambda_3 = \mu_3 > \lambda_4$, $\lambda_1 > \mu_1 = \lambda_2 = \mu_2 > \lambda_3 > \mu_3 > \lambda_4$, or $\lambda_1 = \mu_1 = \lambda_2 > \mu_2 > \lambda_3 > \mu_3 > \lambda_4$.
- $\lambda_1 > \mu_1 > \lambda_2 = \mu_2 = \lambda_3 > \mu_3 > \lambda_4$ and $\lambda_1 + \lambda_4 \neq \mu_1 + \mu_3$.
Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex. There exists $A \in S(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if

- all inequalities are strict.
- exactly one of the inequalities is an equality and $\lambda_2 > \mu_2 > \lambda_3$.
- One of the following holds: $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \lambda_3 = \mu_3 = \lambda_4$, $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 = \lambda_3 = \mu_3 > \lambda_4$, $\lambda_1 > \mu_1 = \lambda_2 = \mu_2 > \lambda_3 > \mu_3 > \lambda_4$, or $\lambda_1 = \mu_1 = \lambda_2 > \mu_2 > \lambda_3 > \mu_3 > \lambda_4$
- $\lambda_1 > \mu_1 > \lambda_2 = \mu_2 = \lambda_3 > \mu_3 > \lambda_4$ and $\lambda_1 + \lambda_4 \neq \mu_1 + \mu_3$.
- $\mu_2 = \lambda_3$ is the only equality.
Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex. There exists $A \in S(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if

- all inequalities are strict.
- exactly one of the inequalities is an equality and $\lambda_2 > \mu_2 > \lambda_3$.
- One of the following holds: $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \lambda_3 = \mu_3 = \lambda_4$, $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 = \lambda_3 = \mu_3 > \lambda_4$, $\lambda_1 > \mu_1 = \lambda_2 = \mu_2 > \lambda_3 > \mu_3 > \lambda_4$, or $\lambda_1 = \mu_1 = \lambda_2 > \mu_2 > \lambda_3 > \mu_3 > \lambda_4$.
- $\lambda_1 > \mu_1 > \lambda_2 = \mu_2 = \lambda_3 > \mu_3 > \lambda_4$ and $\lambda_1 + \lambda_4 \neq \mu_1 + \mu_3$.
- $\mu_2 = \lambda_3$ is the only equality and

$$\mu_2 \neq \frac{\mu_1 \mu_3 (\lambda_1 + \lambda_2 + \lambda_4 - \mu_1 - \mu_3) - \lambda_1 \lambda_2 \lambda_4}{(\lambda_1 - \mu_1)(\mu_1 - \lambda_2) + (\lambda_1 - \mu_1)(\mu_3 - \lambda_4) + (\lambda_2 - \mu_3)(\mu_3 - \lambda_4)}.$$
Theorem

Let $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \mu_3 \geq \lambda_4$. Let G be the graph and let v be the pendant vertex. There exists $A \in S(G)$ such that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the eigenvalues of A and μ_1, μ_2, μ_3 are the eigenvalues of $A(v)$ if and only if

- all inequalities are strict.
- exactly one of the inequalities is an equality and $\lambda_2 > \mu_2 > \lambda_3$.
- One of the following holds: $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \lambda_3 = \mu_3 = \lambda_4$, $\lambda_1 > \mu_1 > \lambda_2 > \mu_2 = \lambda_3 = \mu_3 > \lambda_4$, $\lambda_1 > \mu_1 = \lambda_2 = \mu_2 > \lambda_3 > \mu_3 > \lambda_4$, or $\lambda_1 = \mu_1 = \lambda_2 > \mu_2 > \lambda_3 > \mu_3 > \lambda_4$.
- $\lambda_1 > \mu_1 > \lambda_2 = \mu_2 = \lambda_3 > \mu_3 > \lambda_4$ and $\lambda_1 + \lambda_4 \neq \mu_1 + \mu_3$.
- $\mu_2 = \lambda_3$ is the only equality and

$$\mu_2 \neq \frac{\mu_1 \mu_3 (\lambda_1 + \lambda_2 + \lambda_4 - \mu_1 - \mu_3) - \lambda_1 \lambda_2 \lambda_4}{(\lambda_1 - \mu_1)(\mu_1 - \lambda_2) + (\lambda_1 - \mu_1)(\mu_3 - \lambda_4) + (\lambda_2 - \mu_3)(\mu_3 - \lambda_4)}.$$

- a similar condition if $\lambda_2 = \mu_2$ is the only equality.