The Minimal Rank Problem and Forbidden Subgraphs

Wayne Barrett (BYU)
Jason Grout (BYU)
Don March (University of Florida)
Hein van der Holst (Eindhoven)
Raphael Loewy (Technion)

AMS Sectional Meeting
October 21-23, 2005
Lincoln, Nebraska
Published Work

Setup

\[F \text{ - a field} \]
\[G = (V, E) \text{ - a graph} \]
\[V = \{1, 2, \ldots, n\} \]

\[S(F, G) \]
- set of all symmetric \(n \times n \) matrices \(A \) with graph \(G \).

This means: For \(i \neq j \)

\[a_{ij} \neq 0 \iff ij \in E \]

no condition on the diagonal entries
Example:

\[S(F, \text{paw}) = \left\{ \begin{bmatrix} a & w & x & 0 \\ w & b & y & 0 \\ x & y & c & z \\ 0 & 0 & z & d \end{bmatrix} | a, b, c, d, w, x, y \in F, wxyz \neq 0 \right\} \]

The zeros correspond to the missing edges 14, 24.
Problem

Given a field F and a graph G, find

$$mr(F,G) = \min \{ \text{rank } A | A \in S(F,G) \}$$

Idea of the Question: How much can you tell about a matrix if you only know where the zeros are?

Related to other topics:

- maximum multiplicity of eigenvalues
- degeneracies in chemical bonding theory
- Colin de Verdière graph parameter and planarity
Extreme examples

1. Complete graph K_n:

$$J_n = \begin{bmatrix} 1 & 1 & \ldots & 1 \\ 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \ldots & 1 \end{bmatrix} \in S(F, K_n) \implies \text{mr}(F, G) = 1, \quad n \geq 2$$

Fact: $\text{mr}(F, G) \leq 1 \iff G = K_m \cup K_{n-m}^c, \quad m \geq 2$
2. \(P_n \) \hspace{1cm} \text{Any } A \in S(F, P_n) \text{ has the form}

\[
A = \begin{bmatrix}
 a_1 & b_1 \\
 b_1 & a_2 & b_2 \\
 & b_2 & a_3 & \cdots \\
 \cdots & \cdots & b_{n-1} & b_n \\
 \end{bmatrix}, \hspace{1cm} b_i \neq 0
\]

Deleting the first column and last row gives an invertible lower triangular matrix

\[
\Rightarrow mr(F, P_n) \geq n - 1
\]
for $\text{char} F \neq 2$ (replace the 2's by zeros if $\text{char} F = 2$)

The rows sum to 0, so L is singular $\implies \text{mr}(F, P_n) = n-1$
Focus of our work: For what graphs G is $\text{mr}(F, G) \leq k$?

Approach via forbidden subgraphs

Observation: If H is an induced subgraph of G, then any $B \in S(F, H)$ is a principal submatrix of an $A \in S(F, G)$

$$\implies \text{rank } B \leq \text{rank } A \implies \text{mr}(F, H) \leq \text{mr}(F, G)$$

Example $\text{mr}(F, P_{k+2}) = 4 + 2 - 1 = k + 1$

$$\implies P_{k+2} \text{ cannot be an induced subgraph of any graph } G \text{ with } \text{mr}(F, G) \leq k.$$
Definition. Fix a field F. The graph S is a forbidden subgraph for the class of graphs $G_k = \{G \mid \text{mr}(F, G) \leq k\}$ if

1) $\text{mr}(F, S) = k + 1$

2) $\text{mr}(F, H) \leq k$ for any proper induced subgraph H of S.

Let \mathcal{F}_{k+1} be the set of forbidden subgraphs for G_k. Then

$$G \in G_k \iff \text{no graph in } \mathcal{F}_{k+1} \text{ is induced in } G.$$
\[G \in \mathcal{G}_0 \iff G = K_n^c \quad \mathcal{F}_1 = \{K_2\} \]

\[G \in \mathcal{G}_1 \iff G = K_m \cup K_{n-m}^c \quad \mathcal{F}_2 = \{P_3, 2K_2\} \]

Determining \(\mathcal{G}_2 \):

\(\mathcal{F}_3 \) depends on whether or not \(F \) is infinite and whether or not \(\text{char} \ F = 2 \).
Example:

Full House

clique sum of K_4 and K_3 on K_2

two missing edges: 15, 25
$F = \mathbb{R}$:

$$A = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 2 & 2 & 1 \\
0 & 0 & 1 & 1 & 1
\end{bmatrix}$$

$$A \in S(\mathbb{R}, \text{Fullhouse}) \quad \text{rank } A = 2$$

But if $\text{char } F = 2$, the 3,4 element is $1 + 1 = 0$, not 2 and this $A \not\in S(F, \text{Fullhouse})$
$F = F_2$:

Any $A \in S(F_2, \text{Fullhouse})$ has the form

\[
\begin{bmatrix}
 d_1 & 1 & 1 & 1 & 0 \\
 1 & d_2 & 1 & 1 & 0 \\
 1 & 1 & d_3 & 1 & 1 \\
 1 & 1 & 1 & d_4 & 1 \\
 0 & 0 & 1 & 1 & d_5 \\
\end{bmatrix}
\]

Know all off-diagonal entries now.

$A[145|235] = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & d_5 \end{bmatrix}$ has determinant 1 so rank $A \geq 3$,

\[\implies \text{mr}(F_2, \text{Fullhouse}) \geq 3.\]
Theorem (Barrett, van der Holst, Loewy)

Infinite field Forbidden subgraphs

\[
\begin{cases}
\text{char } F \neq 2 & P_4, K_{3,3,3}, P_3 \cup K_2, 3K_2 \\
\text{char } F = 2 & P_4, K_{3,3,3}, P_3 \cup K_2, 3K_2
\end{cases}
\]

Finite field Forbidden subgraphs

\[
\begin{cases}
\text{char } F \neq 2 & \text{same 6 graphs as infinite case } + \text{ 3 more} \\
\text{char } F = 2 & \text{same 6 graphs as infinite case } + \text{ 4 more}
\end{cases}
\]
\[F = F_2: \]

\[\mathcal{F}_3 = \{ P_4, \quad \text{graph 1}, \quad \text{graph 2}, \quad \text{graph 3}, \quad P_3 \vee P_3, \quad P_3 \cup K_2, \quad 3K_2 \} \]

For each \(k \geq 3 \), a forbidden subgraph characterization of \(G_k \) exists, but is unknown for every field.

Difficulties

1) The number of forbidden subgraphs increases dramatically with \(k \).

2) It is very difficult to know if a given list is complete.
Incentive for studying finite fields

Theorem (Guoli Ding) If the field F is finite, the set \mathcal{F}_k of forbidden subgraphs is finite.

Work with Jason Grout and Don March:

Classification Theorem for \mathcal{G}_k for any finite field of prime order

Enables us to generate such graphs but does not give an easy way to recognize them

In principle, it enables us to generate \mathcal{F}_k automatically
Disconnected Graphs

Fact: if $G = \bigcup_{i=1}^{k} G_k$, $\text{mr}(F, G) = \sum_{i=1}^{k} \text{mr}(F, G_i)$

Example:

$\text{mr}(F, P_4 \cup K_2) = \text{mr}(F, P_4) + \text{mr}(F, K_2) = 3 + 1 = 4$.

Corollary: If $S \in \mathcal{F}_k$ is disconnected, then $S = \bigcup_{i=1}^{m} S_i$ with $S_i \in \mathcal{F}_{s_i}$ connected and $s_1 + s_2 + ... + s_m = k$
Example: disconnected graphs in \mathcal{F}_4 for an infinite field with char $F \neq 2$

$\mathcal{F}_3^c = \{P_4, \begin{tikzpicture} [scale=0.5] \draw[fill=white] (0,0) circle (0.1cm); \draw[fill=white] (1,1) circle (0.1cm); \draw[fill=white] (2,0) circle (0.1cm); \draw[fill=white] (3,1) circle (0.1cm); \draw (0,0) -- (1,1); \draw (1,1) -- (2,0); \draw (2,0) -- (3,1); \end{tikzpicture}, K_{3,3,3}\}$ $\mathcal{F}_2^c = \{P_3\}$ $\mathcal{F}_1 = \{K_2\}$

$3 + 1 : \quad P_4 \cup K_2, \quad \begin{tikzpicture} [scale=0.5] \draw[fill=white] (0,0) circle (0.1cm); \draw[fill=white] (1,1) circle (0.1cm); \draw[fill=white] (2,0) circle (0.1cm); \draw[fill=white] (3,1) circle (0.1cm); \draw (0,0) -- (1,1); \draw (1,1) -- (2,0); \draw (2,0) -- (3,1); \end{tikzpicture} \cup K_2, \quad \begin{tikzpicture} [scale=0.5] \draw[fill=white] (0,0) circle (0.1cm); \draw[fill=white] (1,1) circle (0.1cm); \draw[fill=white] (2,0) circle (0.1cm); \draw[fill=white] (3,1) circle (0.1cm); \draw (0,0) -- (1,1); \draw (1,1) -- (2,0); \draw (2,0) -- (3,1); \end{tikzpicture} \cup K_2, \quad K_{3,3,3} \cup K_2$

$2 + 2 : \quad P_3 \cup P_3 \quad 2 + 1 + 1 : \quad P_3 \cup 2K_2$

$1 + 1 + 1 + 1 : \quad 4K_2$
AIM: List of all graphs $G \in \mathcal{F}_4$ for any field F:

FACTS: Do not know if the list is finite if F is infinite.

P_5 is the only graph on 5 vertices in \mathcal{F}_4.

Next easiest case: G has a cut vertex

Definition: $G_1 \ast G_2$

C_4: \bullet, $K_{1,3}$ \bullet $C_4 \ast K_{1,3}$

The dark vertex is necessarily a cut vertex.
Theorem. (L-Y Hsieh) (Barioli, Fallat, Hogben)
Let F be a field and let $G = G_1 \ast G_2$ with cut vertex v. Then $\text{mr}(F,G)$ is the smaller of the two numbers

\[\text{mr}(F,G_1) + \text{mr}(F,G_2), \quad \text{mr}(F,G_1 - v) + \text{mr}(F,G_2 - v) + 2 \]

Example: \[\begin{array}{c}
\text{graph 1} = \text{graph 2} \ast K_2
\end{array} \]

$G_1 =$, $G_2 = K_2$, $\text{mr}(F, G_1) + \text{mr}(F, K_2) = 2 + 1 = 3$

$G_1 - v = P_3 \quad G_2 - v = K_1$

\[\text{mr}(F, P_3) + \text{mr}(F, K_1) + 2 = 2 + 0 + 2 = 4 \]

$\implies \text{mr}(F, G) = 3$
Application: Let $H \in \mathcal{F}_k$. Then a vertex v in H is adjacent to at most two pendant vertices.

Proof: Suppose that $H \in \mathcal{F}_k$ has a vertex v adjacent to $t \geq 2$ pendant vertices. Express $G = G_1 \ast K_{1,t}$.

mr(G_1) + mr($K_{1,t}$) = mr(G_1) + 2 since $t \geq 2$

mr($G_1 - v$) + mr($K_{1,t} - v$) = mr($G_1 - v$) + mr(tK_1) + 2
= mr($G_1 - v$) + 2

\implies mr(G) = mr($G_1 \ast K_{1,2}$) \implies $G = G_1 \ast K_{1,2}$
\implies $t = 2$
Graphs in \mathcal{F}_4 of the form $G = G_1 \ast K_{1,2}$

$\text{mr}(G) = 4 \implies \text{mr}(G_1 - v) + 2 = 4 \implies \text{mr}(G_1 - v) = 2$

P_3 is the unique graph in \mathcal{F}_2 so $G_1 - v$ contains P_3.

Use minimality of G to deduce $G_1 - v = P_3$

G has the form
Matches the computer generated list of graphs in \mathcal{F}_4 over F_2 containing a vertex adjacent to two pendant vertices.