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occasion of his eightieth birthday.

§1 Introduction.

Let x be a large positive number and y = x1/2. Even if we assume the
Riemann hypothesis, it appears to be hopelessly difficult to show that there
is a prime number p in the interval

I = (x, x+ y].

One approach is to assume that there are Siegel zeros. By making a precise
hypothesis of this nature, Friedlander and Iwaniec [3] show that there are
primes in intervals [x, x+ x39/79] for long ranges of x.

Ramachandra [13] suggested the problem of showing that there is a num-
ber n in I having a large prime factor p,

p > xφ.

This is an ‘approximation’ to the original question. Here of course φ is to
be made as large as possible. Increasing values of φ for which such a p can
be shown to exist have been provided by Ramachandra [13, 14], Graham [4],
Baker [1], Jia [7, 8, 9, 10], Liu [11], Baker and Harman [2], Liu and Wu [17]
and Harman [6].

In Harman’s book, the value of φ is 0.74, and it is noted that recent work
on exponential sums due to Wu [17] and Robert and Sargos [16] give room for
further progress. In the present paper we pursue this programme, and prove
the following result. We write P (n) for the largest prime factor of a natural
number n, and Q(n) for the smallest prime factor of n, with Q(1) = 1.
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Theorem For all sufficiently large x, there are integers n in the interval I
with

P (n) > x0.7428.

We shall quote liberally from earlier works on the subject, especially [2],
[12] and [6]. Let ε be a positive number, which we suppose is sufficiently
small. Let

N(d) =
∑
n∈I
d |n

1,

L = log x, U = x3/5−ε, φ = 0.7428. Then ([6], §6.2)∑
d<x

Λ(d)N(d) =
∑
n∈I

(log n− Λ(n)) = yL+O(y),

∑
d≤U

Λ(d)N(d) =

(
3

5
− ε

)
yL+O(y),∑

U<d<x
d not prime

Λ(d)N(d) = O(y).

It suffices for the proof of our theorem to show that

(1.1)
∑

U<p≤xφ

(log p)N(p) <

(
2

5
+
ε

2

)
yL.

For then the above inequalities yield the existence of p > xφ with N(p) = 1.
(Obviously N(n) = 0 or 1 for n > y.)

Thus we have reduced the question to an upper bound sieve problem. Let
v ∈ [U, x3/4]. Define θ by v = xθ and let

K = (v, ev],

A = {n : n ∈ K, N(n) = 1},
B = {n : n ∈ K}.

Thus A is our set to be sieved, and B is a ‘comparison set’.
For a finite set of natural numbers E , we write

Ed = {n : dn ∈ E},
|E| = cardinality of E .
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We shall be concerned with the quantity

S(Ad, z) = |{n ∈ Ad : Q(n) ≥ z}|

and its averages over d. In particular

S(θ) = S(A, (ev)1/2)

is the number of primes in A. It is not hard to see (compare e.g. [1]) that
(1.1) follows from the bound

(1.2)

∫ φ

0.6−ε

θS(θ)dθ <
2

5
yL,

which we shall establish in the following sections.
We close this section with a few remarks on notation. Throughout the

paper, we suppose that x > C(ε). We write

η = exp(−3/ε), J = [vy−1x4η].

The quantity δ denotes Cη, where C is an absolute constant, not necessarily
the same at each occurrence. Constants implied by �, � and Oε( ) depend
at most on ε. Constants implied by O( ) are absolute. The notation Y � Z
means Y � Z � Y , and ‘m ∼M ’ stands for ‘M < m ≤ 2M ’. We reserve `,
m, n for natural number variables and p, q, r, s, t, u (possibly with suffices)
for prime variables. Finally, let

ψ(α) = α− [α]− 1/2.

§2 The arithmetical information.

Our first lemma concerns the ‘Type I’ sums SI associated to the problem,

SI =
∑
h∼H

∑
n∼N

∑
m∼M

v<mn≤ev

bne

(
hx

mn

)
.

Lemma 1 Suppose that 3
5
≤ θ < 3/4− ε, 1

2
≤ H ≤ J , and |bn| ≤ 1. Then

(2.1) SI � vx−6η

3



provided that either

(2.2) N � x2/5−ε,

or

(2.3) v6x−13/4+ε � N � x1/2−ε.

Proof. For the case (2.2), see [12], Corollary 2 of Theorem 2. (The condition
v < mn ≤ ev can be removed at the cost of a log factor; for more details see
[6], §3.2, for example.)

For the case (2.3), we apply Theorem 2 of Wu [17], which is essentially
an abstraction of a result of Rivat and Sargos [15]. Again, the condition
v < mn ≤ ev can be removed at the cost of a log factor; this is done in [15],
and the extra details can readily be incorporated into [17]. In the notation
of [17], take k = 4, α = γ = −1, β = 1, and replace (H,M,N,X) by
(N,H,M,Hxv−1). We then have the bound

SIx
−η � ((Hxv−1)16N52H68M60)1/80 + ((Hxv−1)N2H2M4)1/4

+NH +N(HM)1/2 +N1/2HM +X−1/2HMN.

Thus we have to verify that

(Hxv−1)16N52H68M60 � v80x−δ,(2.4)

H(xv−1)N2H2M4 � v4x−δ,(2.5)

NH � vx−δ,(2.6)

N(HM)1/2 � vx−δ,(2.7)

and

X−1/2HMN � xv−δ.(2.8)

The left-hand side of (2.4) is

� xδ+8v68x−34v60N−8 � v80x−δ

from (2.3). The left-hand side of (2.5) is likewise

� xδ+1/2v6x−1N−2 � v4x−δ.
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The left-hand side of (2.6) is
� vx−δ

since N < x1/2−ε. The left-hand side of (2.7) is likewise

� N1/2(vx−1/2)1/2v1/2xδ � vx−δ.

The left-hand side of (2.8) is

� H1/2x−1/2+δv3/2 � xδ−3/4v2 � vx−δ

since θ < 3/4− ε. This completes the proof of Lemma 1.

In order to state our results for Type II sums

SII =
∑
h∼H

∑
n∼N

∑
m∼M

v<mn≤ev

ambne

(
hx

mn

)
,

we introduce some notation that is adapted from [12] and [6]. We define φj

by the following table.

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

a

b

3

5

11

18

35

54

2

3

90

131

226

323

547

771

23

32

1857

2500

≈ 0.6 0.6111 0.6481 0.6667 0.687 0.6997 0.7095 0.7188 0.7428

In the above ≈ gives the decimal to four significant figures. Put Jj =
[φj, φj+1). We then write

J (θ) = [θ − 1/2 + ε, τ(θ)− ε]

where τ(θ) is given by the next table.

Interval J1 J2 J3 J4 J5 J6 J7

τ(θ) 2− 3θ
1

6

9θ − 3

17

12θ − 5

17

55θ − 25

17

59θ − 28

66

245θ − 119

261

It is convenient to write K(θ) = [2θ − 1 + ε, 3/2− 2θ − ε] for θ < 5
8
− ε.
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Lemma 2 Suppose that φ1 ≤ θ ≤ φ8. Then for |am| ≤ 1, |bn| ≤ 1, 1
2
≤ H ≤

J , we have
SII � vx−6η

provided that either

(2.9) xθ−1/2+ε �M � xτ(θ)−ε

or

(2.10) θ < 5/8− ε and x2θ−1+ε �M � x3/2−2θ−ε.

Proof. Again, we may remove the condition v < mn ≤ ev at the cost of a
log factor. The case (2.9) is covered in [1] (θ ∈ J1) and [12]. For the case
(2.10), we appeal to Theorem 1 of Robert and Sargos [16], with X = Hxv−1.
We obtain

SIIx
−η � HNM

((
X

NHM2

)1/2

+
1

(HN)1/4
+

1

M1/2
+

1

X1/2

)
.

We already dealt with the last term. Next,

HNM

(
X

HNM2

)1/4

� v2x−1/2+δ
( x

v2M

)1/4

= v3/2x−1/4+δM−1/4 � vx−δ

from (2.10). Next,

HNM(HN)−1/4 � H3/4v3/4M1/4

� v3/2x−3/8+δM1/4 � vx−δ

from (2.10). Finally,

HNM1/2 � v2x−1/2+δM−1/2 � vx−δ

from (2.10). This completes the proof.

The key consequence of Lemma 2 is that (2.9) or (2.10) implies∑
m∼M

∑
n∼N

v<mn≤ev

ambn

{
ψ

(
x+ y

mn

)
− ψ

( x

mn

)}
� yx−5η
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and consequently∑
m∼M

∑
n∼N

mn∈A

ambn = y
∑

m∼M

∑
n∼N

mn∈B

ambn
mn

+O(yx−5η);

compare [2] or [6]. Similarly for Lemma 1.

§3 The alternative sieve: initial stage.

The sieve introduced in [5], and discussed at length in [6], was designated the
‘alternative sieve’ in [2]. (It is an alternative to the Rosser-Iwaniec sieve.) In
the present context, we write

S(Bm, λ) = y
∑

mn∈B
Q(n)≥λ

1

mn

and compare this quantity with S(Am, u). We can regard S(Bm, u) as ‘known’:

Lemma 3 We have

S(Bm, λ) = ω

(
log v/m

log λ

)
y

m log λ
(1 +Oε(L

−1))

for m ≤ v1−η and xε ≤ λ ≤ v/m. Here ω(u) is Buchstab’s function.

Proof. This is a slight variant of [2], Lemma 8.

Under the conditions of Lemma 1,

(3.1)
∑
n∼N

bn|An| = y
∑
n∼N

bn
n

+Oε(yx
−5η)

(compare [2], Lemma 9), and one can easily deduce that∑
n∼N

∑
d<xε

p|d⇒p<xη

bn

∣∣∣|And| −
y

nd

∣∣∣ = Oε(yx
−4η)

provided that either

(3.2) N � x2/5−2ε
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or

(3.3) v6x−13/4+ε � N � x1/2−2ε.

Of course, if v < x73/120−ε, then

v6x−13/4+ε < x2/5−2ε,

so that (3.1) holds whenever

(3.4) θ <
73

120
− ε , N � x1/2−2ε.

Arguing just as in Lemma 10 of [2], we now obtain

Lemma 4 Suppose that one of (3.2), (3.3) or (3.4) holds. Let 0 ≤ an ≤ 1
(n ∼ N), an = 0 unless Q(n) ≥ xη (n ∼ N). Then∑
n∼N

anS(An, x
η) =

∑
n∼N

anS(Bn, x
η)

(
1 +O

(
exp

(
− ε
η

log
ε

η

)))
+Oε(yx

−4η).

Here, and in succeeding lemmas, it is possible to attain a sharper error
term on the right-hand side by following the arguments in [6], Chapter 3.
Since this would not improve our final result, we keep the exposition close to
that of [2].

The other structural component of the alternative sieve, in the present
application, is

Lemma 5 Let φ1 ≤ θ ≤ φ8. Let h ≥ 1 be given, and let D ⊂ {1, . . . , h}. Let
1 ≤M ≤M1, M1 ≤ 2M , and suppose that one of (i), (ii) holds.

(i) Either xθ−1/2+ε �M � xτ(θ)−ε or xθ−τ(θ)+ε �M � x1/2−ε;

(ii) θ < 5/8 − ε and either x2θ−1+ε � M � x3/2−2θ−ε or x3θ−3/2+ε � M �
x1−θ−ε.

Then ∑
p1

. . .
∑∗

ph

S(Ap1...ph
, p1)

=
∑
p1

. . .
∑∗

ph

S(Bp1...ph
) +O(yx−4η).
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Here * indicates that p1, . . . , ph satisfy

xη ≤ p1 < · · · < ph,

M ≤
∏
j∈D

pj < M1,

together with no more than ε−1 further conditions of the form

(3.5) R ≤
∏
j∈F

pj ≤ S.

Proof. This is proved in exactly the same way as [2], Lemma 12, using
Lemma 2 of the present paper in place of Lemma 11 of [2].

It is convenient to write, for φ1 ≤ θ ≤ φ8,

a = vx−1/2−ε , b = xτ(θ)−ε,

and for φ1 ≤ θ < 5/8− ε,

c = v2x−1+ε , d = x3/2−2θ−ε.

We also write
w = b/a , w′ = d/c.

Note that w′ = w for θ ≤ 11/18, while w′ < w for 11/18 < θ ≤ 5/8− ε.
Let E = E(x, ε) be some function of x and ε, with 0 < E(x, ε) ≤ ε. We

can now write down some general conditions under which we have

(3.6)
∑
m

amS(Am, z) =
∑
m

amS(Bm, z)(1 +O(E))

for xη ≤ z ≤ w; and some further conditions under which we have (3.6) for
the range xη ≤ z ≤ w′. When (3.6) holds, we say for brevity that∑

m

amS(Am, z) has an asymptotic formula with error E.

Let us write

γ =

{
1/2− 2ε for φ1 ≤ θ < 73/120− ε

2/5− 2ε for 73/120− ε ≤ θ ≤ φ8.
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Lemma 6 Let φ1 ≤ θ ≤ φ8. Let

1/2 ≤M � a , 1/2 ≤ N � xγa−1,

M ≤M1 ≤ 2M , N ≤ N1 � 2N,

xη < z ≤ w.

Suppose that {1, . . . , h} partitions into two sets C and D. Then∑
p1

. . .
∑∗

ph

S(Ap1...ph
, w)

has an asymptotic formula with error ε. Here * indicates that p1, . . . , ph

satisfy

z ≤ p1 < · · · < ph,

M ≤
∏
j∈C

pj < M1 , N ≤
∏
j∈D

pj < N1,

together with no more than ε−1 further conditions of the form (3.5).

Proof. This is proved in exactly the same way as Lemma 13 of [2], using
Lemma 4 of the present paper in place of Lemma 10 of [2].

Let
g = v6x−13/4+ε (φ1 ≤ θ < 37/60).

The significance of the number 37/60 is that

g < v/b

holds for θ < 37/60.

Lemma 7 Let φ1 ≤ θ ≤ 5/8 − ε. Let P1 ≥ xη, . . . , Ph ≥ xη, and suppose
that either

(3.7) P1 . . . Ph � v/d , xη ≤ z ≤ w′

or that θ < 37/60 and

(3.8) g � P1 . . . Ph � v/b , xη ≤ z ≤ w,

where the condition P1 . . . Ph � g can be deleted in (3.8) if θ < 73
120
− ε. Then

(3.9)
∑

p1∼P1

· · ·
∑

ph∼Ph

S(Ap1...ph
, z)

has an asymptotic formula with error ε.
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Proof. This is similar to that of [2], Lemma 13, so we shall be brief. We
write

∑
p

for
∑

p1∼P1

. . .
∑

ph∼Ph

and m for p1 . . . ph. Suppose first that (3.7) holds.

By Buchstab’s identity,∑
p

S(Am, z) =
∑
p

S(Am, x
η)

−
∑
p

∑
xη≤q1<z

S(Amq1 , q1).

The first term on the right has an asymptotic formula with error exp
(
− ε

η
log ε

η

)
,

by Lemma 4. The subsum of the second term on the right for which mq1 ≥
v/d has an asymptotic formula with error x−η by Lemma 5, since

mq1 ≤ (v/d)z ≤ v/c.

To the residual sum in which mq1 < v/d, we apply Buchstab again. If we
continue in this fashion, the jth step is the identity∑

j
: =

∑
p

∑
(3.10)

S(Amq1...qj
, q)

=
∑
p

∑
(3.10)

S(Amq1...qj
, xη)−

∑
p

∑
(3.11)

S(Amq1...qj+1
, qj+1)

with summation conditions

xη ≤ qj < · · · < q1 < z, mq1 . . . qj < v/d,(3.10)

xη ≤ qj+1 < qj . . . q1 < z, mq1 . . . qj < v/d.(3.11)

The first of the subtracted pair of sums has an asymptotic formula with

error exp
(
− ε

η
log ε

η

)
by Lemma 4, and the subsum of the second of the pair

complementary to
∑

j+1 has an asymptotic formula with error x−η, since

(3.12) v/d ≤ mq1 . . . qj+1 < (v/d)qj+1 < (v/d)w = v/c.

The residual sum is
∑

j+1. After Oε(1) steps the residual sum is empty,
giving a decomposition of

∑
p

S(Am, z) into a main term and an error term.
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A corresponding decomposition applies to
∑
p

S(Bm, z), and just as in the

proof of [2], Lemma 13, (3.9) has an asymptotic formula with error

η−121/η exp

(
− ε
η

log
ε

η

)
< ε.

This completes the proof of the case (3.7). The case (3.8) is very similar,
with v/b and w in the roles of v/d and w′ : thus (3.12) is replaced by

v/b ≤ mq1 . . . qj+1 < (v/b)qj+1 < (v/b)w = v/a.

§4 Assembling the components of the final de-

composition.

For each θ, we shall in §5 make a ‘final decomposition’ of S(A, (ev)1/2) and a
corresponding decomposition of S(B, (ev)1/2), using Buchstab’s identity and,
in some cases, role reversals. Let us say this takes the form

S(A, (ev)1/2) =
k∑

j=1

Sj −
∑̀

j=k+1

Sj,

S(B, (ev)1/2) =
k∑

j=1

S∗j −
∑̀

j=k+1

S∗j .

Here Sj ≥ 0, S∗j ≥ 0 and for j ≤ k and, say, k + 1 ≤ j < t (where t ≤ `) we
have

Sj = S∗j (1 +O(ε)).

Thus we get the upper bound

S(A, (ev)1/2) ≤

(
S(B, (ev)1/2) +

∑̀
j=t

S∗j

)
(1 +O(ε)).

We strive to make the ‘discarded sums’ Sj, with t ≤ k ≤ ` as small as possible
(thinking of them as regions in Euclidean spaces).

The first step is

S(A, (ev)1/2) = S(A, w)−
∑

w≤p<(ev)1/2

S(Ap, p).
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To continue the process for p ∈ I, an interval where no asymptotic formula
is available for

(4.1)
∑
p∈I

S(Ap, p),

we need to give asymptotic formulae for∑
p∈I

S(Ap, w) and
∑
p∈I

∑
w≤q<p

S(Apq, w
∗)

where w∗ = w or w′ (depending on p, q). If this cannot be done, we discard
the sum (4.1). These remarks should give context to the lemmas in the
present section.

Lemma 8 Let θ ≤ 0.65− ε, P < b2. Then∑
p∼P

S(Ap, w)

has an asymptotic formula.

Proof. See [6], Lemma 6.7.

Lemma 9 Let φ1 ≤ θ ≤ 5/8− ε, w ≤ Q ≤ P ≤ (ev)1/2, and suppose that

PQ2 � v,

P,Q are not in [a, b] ∪ [c, d]

PQ 6∈ [vd−1, vc−1] ∪ [vb−1, va−1].

Suppose further that either

(i) θ < 73/120− ε, or

(ii) P ≤ x1/2−εv−1/2.

Then ∑
p∼P

∑
q∼Q

S(Apq, w
′)

has an asymptotic formula.
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Proof.
(i) If Q < a, we can apply Lemma 6, since

P ≤ (ev)1/2 < x1/2/a.

Thus we may suppose that Q > b. We cannot have P > d, since

b2d = x11/2−8θ−3ε > vxε.

Thus we have
Q ≤ P < c.

Accordingly,
PQ < c2 < x1/2−ε = va−1.

Hence we have
PQ < vb−1,

and the result follows from Lemma 7.

(ii) We have
PQ ≤ x1−2εv−1 < v/c.

Hence PQ < v/d, and we may apply Lemma 7.

Lemma 10 Suppose that θ ∈
[

73
120

− ε, 47
75
− ε
]

and evb−2 < P < (ev)1/2, and

either P ≤ x2/5−2εa−1, or θ < 11
18
− ε and P > x2/5−2εa−1. Then

(4.2)
∑
p∼P

S(Ap, p) ≥
∑
p∼P

S(Bp, p)(1 +O(ε))− S∇.

Here S∇ is defined as follows. For P ≤ x2/5−2εa−1,

(4.3) S∇ =
∑
∇

S(Bpqr, r).

Here ∇ is the region

p ∼ P, w ≤ r < q < a, q < (ev/p)1/2, r < (ev/pq)1/2,

where it is understood that no combination of the variables satisfies the re-
quirements of Lemma 5.
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For θ < 11/18− ε, P > x2/5−2εa−1, we have

(4.4) S∇ =
∑
∇

S(Bmqu, u),

where ∇ is the set of conditions

mq ∼ P, w ≤ q < a, Q(m) ≥ q, w ≤ u < (ev/P )1/2.

Again, no combination of the variables m, q, u satisfies the requirements of
Lemma 5.

Proof. This is essentially Lemma 6.8 of [6], using Lemma 5 in place of the
corresponding result in [6].

The role reversal used in the second part of Lemma 10 does not yield
useful results if we extend it beyond θ = φ2. We now treat a role reversal for

(4.5)
∑
p∼P

S(Ap, p)

where we assume that

73

120
− ε ≤ θ < φ2 and b < P < vg−1.

Besides primes q with pq ∈ A, the above sum counts pq1q2 ∈ A with p ≤
q1 ≤ q2. The dependence of q1 on p suggests that we first show that∑

p∼P

S(Ap, p) =
∑
p∼P

S(Ap, P ) +O

(
L−1

∑
p∼P

S(Bp, p)

)
.

Clearly it suffices to show that

(4.6)
∑

pq1q2∈A
p∼P, q1≤q2

P≤q1<p

1 = O

(
L−1

∑
p∼P

S(Bp, p)

)
.

The left-hand side of (4.6) is

≤
∑
p∼P

q2�vP−2

S(Apq2 , P ) = O

 ∑
p∼P

q2�vP−2

y

pq2L


= O(yL−3)
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from Lemma 4, since vP−1 > g. This implies (4.6).
We now proceed as in [6], §6.6. The sum (4.5) is, with acceptable error,

{p` : p` ∈ A, p ∼ P, Q(`) ≥ P}

=
∑

`�v/P

Q(`)≥P

S(A(`), (2P )1/2),

where
A(`) = {m : m ∼ P, m` ∈ A}.

We rewrite the sum over ` as∑
`�v/P

Q(`)≥P

S(A(`), w)−
∑

`
w≤q<(2P )1/2

S(A(`)q, q).

The first of the subtracted pair of sums has an asymptotic formula by Lemma
7, since v/P > g. For the second sum, we note that

q < x13/8+εv−5/2 < a

since θ > 17/28. We reverse roles again:∑
`

w≤q<(2P )1/2

S(A(`)q, q) =
∑

mq∼P

w≤q<(2P )1/2

Q(m)≥q

S(Amq, (ev/P )1/2).

Since m � x3/4+3εv−1 < b , we can restrict attention to m < a in the last
expression. Now m is prime, since w2 > a; write m = r. Apply Buchstab
once more: ∑

rq∼P
w≤q<r<a

S(Arq, (ev/P )1/2)

=
∑
rq∼P

w≤q<r<a

S(Arq, w)−
∑
rq∼P

w≤q<r<a

w≤u<(ev/P )1/2

S(Arqu, u).

The first sum on the right-hand side satisfies the requirements of Lemma 6.
We discard those parts of the second sum for which we cannot give an asymp-
totic formula by Lemma 5. This establishes the first part of the following
result.
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Lemma 11 Suppose that 73
120

− ε ≤ θ < 13
21

and either

(i) θ < 11
18

and b < P < vg−1

or
(ii) P ≤ x1/2−εv−1/2.

Then (4.1) holds. In (i),

S∇ =
∑
∇

S(Brqu, u)

and ∇ is the part of the region

rq ∼ P, w ≤ q < r < a, w ≤ u < (ev/P )1/2

where no combination of variables satisfies the conditions of Lemma 5. In
(ii),

S∇ =
∑
∇

S(Bpqr, r),

and ∇ is the part of the region

(4.7) p ∼ P, w′′ ≤ r < q < p, r < (ev/pq)1/2

where no combination of variables satisfies the conditions of Lemma 5, and
w′′ = w or w′ depending on whether q < a or q > b.

For the second part of the lemma, we apply Buchstab twice to the sum
(4.5), taking into account Lemma 9 (ii). We then discard the part of∑

(4.7)

S(Apqr, r)

to which Lemma 5 does not apply.

§5 Completion of the proof of the Theorem.

As noted in the introduction, our treatment is just as in [6], §6.7 for θ ≥
5/8 − ε. For the moment, suppose that φ1 ≤ θ < 5

8
− ε. We begin our final

17



decomposition with

S(A, (ev)1/2) = S(A, w)−
∑

w≤p<a

S(Ap, p)−
∑

p∈[a,b]∪[c,d]

S(Ap, p)(5.1)

−
∑

b<p<(ev)1/2

p6∈[c,d]

S(Ap, p).

= S1 − S2 − S3 − S4 , say.

We have asymptotic formulae for S1 and S3. The treatment of S2 and S4

raises several questions, the answers depending on θ.

(i) Is there an interval of p within S2 for which an asymptotic formula
holds?

(ii) For the rest of S2 and S4, which intervals I of p permit two further
decompositions, in the sense

∑
p∈I

S(Ap, p) =
∑
p∈I

S(Ap, w)−
∑
p∈I
q∈Jp

w≤q<p

S(Apq, w)(5.2)

+
∑
p∈I
q∈Jp

w≤r<q<p

S(Apqr, r)−
∑
p∈I
q /∈Jp

w′≤q<p

S(Apq, w
′)

+
∑
p∈I
q 6∈Jp

w′≤r<q<p

S(Apqr, r)

= S5 − S6 + S7 − S8 + S9,

say?

(iii) In S7, S9, which portions permit two more decompositions to obtain
sums ∑

S(Apqr, w1)−
∑

S(Apqrs, w2)(5.3)

+
∑

S(Apqrst, t)

= S10 − S11 + S12, say?

18



How do we choose w1 and w2 according to the region in which (p, q, r),
(p, q, r, s) lie?

(iv) Are there further intervals of p in which a role reversal in

(5.4)
∑
p∈I

S(Ap, p)

is to be preferred to discarding the sum in (5.4)?

(v) Can a small part of (5.4) be recovered, rather than discarding all of
it?

Of course, a decomposition terminates if some combination of variables
allows us to apply Lemma 5. For example, we do not decompose further the
portion of S7 with pqr ∈ [c, d]. There are seven Buchstab decompositions in
some cases; these will be noted below.

We write

T (θ) =
L

y
S(θ).

For simplicity of writing, we ignore any terms in the construction of an upper
bound for T (θ) which are O(ε).

We now provide answers to (i)–(v) above.

(i) For θ < 11/18, we have w2 > a and (as in [6]) there is an asymptotic
formula for the part S ′2 of S2 with p < b1/2. For θ ≥ 11/18 there is nothing
corresponding to S ′2.

(ii) For θ < 73/120, (5.2) is applied for I = (b1/2, a), (b, c), (d, v1/2), and
Jp consists of (w, a). For p < v1/2 implies p < x1/2a−1. If q > b, we place
(p, q) in S8, since pq2 < v implies pq < vb−1.

For θ ∈
(

73
120
, 11

18

)
, (5.2) is applied for p < (x/v)1/2 and d < p < x9/10−θ.

Note that if p > d, then q < b since db2 > v; in this case, Jp = (w, a). In fact,
since (x/v)1/2 < x9/10−θ, Jp = (w, a) for p < (x/v)1/2; while for p < (x/v)1/2,
q > a, we may place (p, q) in S8 since pq < x/v implies pq < v/c.

For θ ∈
(

11
18
, 13

21

)
, we apply (5.2) for p < (x/v)1/2, with Jp = (w, a), arguing

as in the last paragraph.
For θ ∈

(
13
21
, 5

8

)
, we apply (5.2) for p < a, with Jp = (w, a). The point

here is that w′ is too small for numerical results arising from Lemma 7 to be
helpful.
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(iii) We carry out two more decompositions if either

(a) p, q, r, r can be combined into two products m,n with m < xγa−1,
n < a; or

(b) pqr2 < v/c; or

(c) θ < 73/120 and pqr2 < x1/2; or

(d) 73
120

< θ < 37
60

, and

(†) p, q, r can be combined into two products m,n with m < x9/10−θ,
n < a, or else pqr < v/d;

(‡) pqrw > g and pqr2 < x1/2.

If (a) is satisfied, we apply Lemma 6 to S10 and S11. If (b) is satisfied,
then we apply Lemma 7 to S11, and to S10 we can definitely apply Lemma 7
and may be able to apply Lemma 6. If (c) is satisfied, we can apply Lemma
6 or 7 to S10, S11. Since for w < r < s, (‡) implies

g < pqrs < x1/2,

we can apply Lemma 7 in case (d) to S11, and either Lemma 6 or 7 applies
to S10. It is clear that, for θ > 11

18
, we always apply Lemma 6 in preference

to Lemma 7 if the necessary hypotheses are fulfilled, and this determines w1

and w2.

(iv) A role reversal based on Lemma 10 (ii) is used for 73
120

< θ < 11
18

,
p > x9/10a−1.

A role reversal based on Lemma 11 is used for 73
120

< θ < 11
18

, p ∈
((x/v)1/2, vg−1). The latter interval disappears for θ > 11/18.

(v) According to (i)–(iv), S(Ap, p) is discarded for vg−1 < p < c, if

θ ∈
(

73
120
, 11

18

)
; for p ∈

(
x1/2

v
, c
)

and p ∈ (d, v1/2), if 11
18
< θ < 13

21
; and for

p ∈ (b, c) and p ∈ (d, v1/2), if θ > 13/21.

If θ ∈
(

13
21
, 5

8

)
, then

b2c < v

by a generous margin. From the discarded terms S(Ap, p), we can recover
those pqr in A with b < p < q < r, c < r < d.
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Seven-dimensional integrals arise for θ ∈
(

17
28
, 5

8

)
, since then w6 < v/b,

and it can happen that in S12, p, q, r, s, t, u permits a treatment similar to
that in (iii) whenever w < u < t: for θ close to 17

28
, this would depend on the

inequalities
pqrstu < pqrst2 , pqrstu > pqrstw.

The above discussion will enable the reader to write down the multidi-
mensional integrals I1, . . . , Ih such that

(5.5) T (θ) ≤ 1

θ
+ I1 + · · ·+ Ih.

In the case θ ∈
(

13
21
, 5

8

)
, there is a further integral arising from (v),

Ih+1 =

∫ (1−θ)/2

1/6

∫ 1−θ−α

max(3θ− 3
2
−α,α)

dβ

β2

dα

α2

such that

(5.6) T (θ) ≤ 1

θ
+ I1 + · · ·+ Ih − Ih+1.

For integrals similar to I1, . . . , Ih, see the discussion in [6], §6.7.
The conclusions that we obtain from (5.5), (5.6) are as follows. We have

(5.7)

∫ φ2

φ1

θT (θ)dθ < 0.01153.

(Note how close this is to the conjectural value 0.01111 . . .). Further,

(5.8)

∫ φ4

φ2

θT (θ)dθ < 0.12455.

Of course, the saving in (5.8) compared with [6] comes only from φ2 < θ <
5/8.

Just as in [6], ∫ φ8

φ4

θT (θ)dθ < 0.17597,(5.9)

and ∫ φ9

φ8

θT (θ)dθ <
5

2
(φ2

9 − φ2
8) < 0.088.(5.10)

We may combine (5.7)–(5.10) to give (1.2). This completes the proof of the
Theorem.
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