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§1 Introduction.

Let = be a large positive number and y = z'/2. Even if we assume the
Riemann hypothesis, it appears to be hopelessly difficult to show that there
is a prime number p in the interval

T = (z,z+y

One approach is to assume that there are Siegel zeros. By making a precise
hypothesis of this nature, Friedlander and Iwaniec [3] show that there are
primes in intervals [z, z + 39/ ™] for long ranges of z.

Ramachandra [13] suggested the problem of showing that there is a num-
ber n in Z having a large prime factor p,

p > .
This is an ‘approximation’ to the original question. Here of course ¢ is to
be made as large as possible. Increasing values of ¢ for which such a p can
be shown to exist have been provided by Ramachandra [13, 14}, Graham [4],
Baker [1], Jia [7, 8, 9, 10], Liu [11], Baker and Harman [2], Liu and Wu [17]
and Harman [6].

In Harman’s book, the value of ¢ is 0.74, and it is noted that recent work
on exponential sums due to Wu [17] and Robert and Sargos [16] give room for
further progress. In the present paper we pursue this programme, and prove
the following result. We write P(n) for the largest prime factor of a natural
number n, and Q(n) for the smallest prime factor of n, with Q(1) = 1.



Theorem For all sufficiently large x, there are integers n in the interval T
with
P(n) > 2072,
We shall quote liberally from earlier works on the subject, especially [2],
[12] and [6]. Let € be a positive number, which we suppose is sufficiently

small. Let
N(d)=>)"1,

nel
d|n

L=logz, U=2%°" ¢ =0.7428. Then ([6], §6.2)

Y AN(d) =) (logn - A(n)) = yL + O(y),

d<zx nezl

S A@N ) = (3~ )y -+ o),

a<vu

Y. AdN()=O0ly).

U<d<z
d not prime

It suffices for the proof of our theorem to show that

(1.1) S (logp)N(p) < (g + g) yL.

U<p<z?®

For then the above inequalities yield the existence of p > ¢ with N(p) = 1.
(Obviously N(n) =0 or 1 for n > y.)

Thus we have reduced the question to an upper bound sieve problem. Let
v € [U,2%4]. Define § by v = 2% and let

K = (v,ev],
A={n:nek, N(n)=1},
B={n:nekK}.

Thus A is our set to be sieved, and B is a ‘comparison set’.
For a finite set of natural numbers £, we write

Es={n:dn € &},
|€] = cardinality of £.



We shall be concerned with the quantity
S(Au, 2) = {n € Ag: Q(n) = 2}
and its averages over d. In particular
S(0) = S(A, (ev)'?)

is the number of primes in A. It is not hard to see (compare e.g. [1]) that
(1.1) follows from the bound

¢
(12) / 05(0)d0 < 2 yIL,
0.6—e 5

which we shall establish in the following sections.
We close this section with a few remarks on notation. Throughout the
paper, we suppose that z > C(e). We write

n = exp(=3/e), J = [vy 'z,

The quantity § denotes Cn, where C'is an absolute constant, not necessarily
the same at each occurrence. Constants implied by <, > and O.( ) depend
at most on €. Constants implied by O( ) are absolute. The notation Y =< Z
means Y < Z <Y, and ‘m ~ M’ stands for ‘M < m < 2M’. We reserve /,
m, n for natural number variables and p, ¢, r, s, t, u (possibly with suffices)
for prime variables. Finally, let

(o) =a—[a] —1/2.

§2 The arithmetical information.

Our first lemma concerns the ‘“Type I’ sums S} associated to the problem,

5=Y %Y % b(%)

h~H n~N m~M
v<mn<ev

Lemma 1 Suppose that % <0 <3/4—c¢, % < H<J, and |b,| < 1. Then

(2.1) S; < v~
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provided that either

(2.2) N < x5,
or
(2.3) WO « N < 22

Proof. For the case (2.2), see [12], Corollary 2 of Theorem 2. (The condition
v < mn < ev can be removed at the cost of a log factor; for more details see
6], §3.2, for example.)

For the case (2.3), we apply Theorem 2 of Wu [17], which is essentially
an abstraction of a result of Rivat and Sargos [15]. Again, the condition
v < mn < ev can be removed at the cost of a log factor; this is done in [15],
and the extra details can readily be incorporated into [17]. In the notation
of [17], take k = 4, a = v = —1, § = 1, and replace (H, M, N, X) by
(N,H, M, Hzv™'). We then have the bound

Sz < (Hzv DI N2HOS MOS0 L (Hzo Y YN2H? M)A
+ NH+ N(HM)"? + NY?HM + X HMN.

Thus we have to verify that

(2.4) (Hzv M) N2HB M < 80270,
. TU Lvzx

(2.5) H(zv  WN*H*M* < v'2~°,
(2.6) NH <vz™°,
(2.7) N(HM)'? < vz,
and
(2.8) XY?HMN < xv™°.

The left-hand side of (2.4) is
& OBy 68— 34, 60 \T—8 o, 80, 3
from (2.3). The left-hand side of (2.5) is likewise
< V28T INT? < vt

4



The left-hand side of (2.6) is

<K v ™0

since N < x'/27¢. The left-hand side of (2.7) is likewise
< NY2(pz= V22120 40
The left-hand side of (2.8) is
< HY2p=1/245,8/2 o 15-8/4,2 o 406

since 6 < 3/4 — e. This completes the proof of Lemma 1.

In order to state our results for Type II sums

S=3"3 3 anbue (%)

h~H n~N m~M
v<mn<ev

we introduce some notation that is adapted from [12] and [6]. We define ¢;
by the following table.

P1 ®2 P3 o ®s b6 o7 P8 o

11 35 2 90 226 247 23 1857

18 54 3 | 131 | 323 | 771 | 32 | 2500

SalBS
o]l w

0.6 | 0.6111 | 0.6481 | 0.6667 | 0.687 | 0.6997 | 0.7095 | 0.7188 | 0.7428

Q

In the above ~ gives the decimal to four significant figures. Put J; =
[¢j7 ¢j+1). We then write

J@)=[0—-1/2+¢€ 7(0) — €]

where 7(6) is given by the next table.

Interval Jl J2 Jg J4 J5 JG J7
1 190—3]120—5 | 550 —25 | 596 — 28 | 2450 — 119
9 _ -
7(0) W15 |17 17 17 66 261

It is convenient to write () = [20 — 1+ ¢, 3/2 — 20 —¢] for 6 < 2 — .
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Lemma 2 Suppose that ¢1 < 0 < ¢s. Then for |a,,| <1, |by] <1, % <H<L
J, we have

Spp < vx™%
provided that either
(2.9) 2071V « Mo« 7O
or
(2.10) 0<5/8—¢ and 2%V < M < 2327

Proof. Again, we may remove the condition v < mn < ev at the cost of a
log factor. The case (2.9) is covered in [1] (f € J;) and [12]. For the case
(2.10), we appeal to Theorem 1 of Robert and Sargos [16], with X = Hxv™!.
We obtain

1/2
1 1 1
—1
Stix <<HNM<(NHM2) +(HN)1/4+M1/2+X1/2)'

We already dealt with the last term. Next,

1/4 14
2 71/2+5( z >
v —
> < M

A2 VAR 1A g

X
HNM (HNM2
from (2.10). Next,

HNM(HN)™V* < H34* Mt/
< 03/2$_3/8+5M1/4 < ’U:L‘_(S

from (2.10). Finally,
HNM'? < v?g VPPN <y

from (2.10). This completes the proof.
The key consequence of Lemma 2 is that (2.9) or (2.10) implies
5 % antn {o (SE0) -0 (2) ) <
mn mn

m~M n~N
v<mn<ev




and consequently

S Y=Y Y o,

m~M n~N m~M n~N
mneA mneB

compare [2] or [6]. Similarly for Lemma 1.

§3 The alternative sieve: initial stage.

The sieve introduced in [5], and discussed at length in [6], was designated the
‘alternative sieve’ in [2]. (It is an alternative to the Rosser-Iwaniec sieve.) In
the present context, we write

1
S -y > —
(B, A) =y p—
mne B
Q(n)=A

and compare this quantity with S(A,,,«). We can regard S(B,,, u) as ‘known”:

Lemma 3 We have

logo/m L
— 1 L
S(Bm, A) = w ( log A > mlog A (1+O(L77)

form < o' and ¢ < X\ < v/m. Here w(u) is Buchstab’s function.

Proof. This is a slight variant of [2], Lemma 8.

Under the conditions of Lemma 1,
bn _
(3.1) > bl A=y ) 4 Oulyr™)
n~N n~N
(compare [2], Lemma 9), and one can easily deduce that

2. > b

n~N  d<z€
pld=p<z”

_i: —4n
[Aual = 5| = Ou(ya™)

provided that either

(3.2) N < g?/57%



or
(33) U6$_13/4+6 < N <<I1/2—26'

Of course, if v < £™/129=¢ then

WS 18/4+e x2/5—26’

so that (3.1) holds whenever

3 1/2—2¢
(3.4) 6’<m e, N<Kux :

Arguing just as in Lemma 10 of [2], we now obtain

Lemma 4 Suppose that one of (3.2), (3.3) or (3.4) holds. Let 0 < a, <1
(n~ N), a, =0 unless Q(n) > x" (n ~ N). Then

3 anS(Ana™) = Y auS (B, a") (1 +0 <eXp (_% log %))>+Oe(yx4’7).

Here, and in succeeding lemmas, it is possible to attain a sharper error
term on the right-hand side by following the arguments in [6], Chapter 3.
Since this would not improve our final result, we keep the exposition close to
that of [2].

The other structural component of the alternative sieve, in the present
application, is

Lemma 5 Let ¢1 < 6 < ¢g. Let h > 1 be given, and let D C {1,... h}. Let
1< M < M, My <2M, and suppose that one of (i), (ii) holds.

(i) Bither /=22 « M < 27O0)=¢ op 2070+ « M < g1/,

(i) 6 < 5/8 — € and either 22717 < M < 23/2720=¢ or 13973/2 « M <«
1—-0—¢
T .

Then

Z . Z* S(Apl...pmpl)
p1

Ph

=5 Y S(Byy) + Oy ).



Here * indicates that py, ..., ppn satisfy

2 <pp <o < pp,
MSHpj<M1>

jED
together with no more than e~ ' further conditions of the form
(3.5) R<[[pm<s
JEF

Proof.  This is proved in exactly the same way as [2], Lemma 12, using
Lemma 2 of the present paper in place of Lemma 11 of [2].

It is convenient to write, for ¢; < 6 < ¢,

a= U$_1/2_E 7 b= I,T(@)—ﬁ

)

and for ¢; <0 <5/8 —¢,
c= U2x_1+6 ’ d = ZL'3/2_29_€.
We also write
w="b/a, w =dfc.

Note that w' = w for § < 11/18, while v’ < w for 11/18 < § < 5/8 —e.
Let £ = E(z,€) be some function of x and €, with 0 < E(z,¢) <e. We
can now write down some general conditions under which we have

(3.6) > anS(Am,2) =SB, 2)(1+ O(E))

m m

for 2" < z < w; and some further conditions under which we have (3.6) for
the range 27 < z < w’. When (3.6) holds, we say for brevity that

Z amS(Am, z) has an asymptotic formula with error E.

Let us write

) 1/2—2¢ for ¢, <O <T73/120 —¢
T 2/5 -2 for 73/120 — ¢ < 6 < o



Lemma 6 Let ¢ < 0 < ¢g. Let
12<M<a, 1/2§N<<x7a’1,
M < M <2M , N < N; <€ 2N,

"<z <w.

Suppose that {1,...,h} partitions into two sets C and D. Then
Y S
p1 Ph

has an asymptotic formula with error €. Here * indicates that py,...,pn
satisfy

2 < p1 <+ <D,
MSHPJ‘<M1,N§HPJ‘<N1,

jec jED
together with no more than €' further conditions of the form (3.5).

Proof. This is proved in exactly the same way as Lemma 13 of [2], using
Lemma 4 of the present paper in place of Lemma 10 of [2].
Let
g = V0134 (91 <0 < 37/60).

The significance of the number 37/60 is that
g<uv/b
holds for 6 < 37/60.

Lemma 7 Let o1 < 0 <5/8 —€. Let P, > x",..., P, > ", and suppose
that either

(3.7) P..P<v/d, 2"<z<uw
or that 8 < 37/60 and
(3.8) gL P ... P,<v/b, 2" <z<w,

where the condition Py ... P, > g can be deleted in (3.8) if < = —e¢. Then

(3'9) Z Z S(Ammpmz)

p1~P1 pr~P,

has an asymptotic formula with error .
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Proof. This is similar to that of [2], Lemma 13, so we shall be brief. We
write Y for > ... > and m for p;...ps. Suppose first that (3.7) holds.

p pi~P1 Pr~Pp
By Buchstab’s identity,

> S( A z) =) S(Ap,a)
- Z Z mq17Q1)-

"<q1<z

The first term on the right has an asymptotic formula with error exp (—% log %) ,

by Lemma 4. The subsum of the second term on the right for which mq; >
v/d has an asymptotic formula with error =" by Lemma 5, since

mq < (v/d)z <wv/e.

To the residual sum in which mgq; < v/d, we apply Buchstab again. If we
continue in this fashion, the jth step is the identity

2= 2 S Angg0)

P (3.10)
= E : E : S mq1 ;T E E S mq1 QJ+17qj+1)
p (3.10) P (3.11)

with summation conditions

(3.10) " <qg < <q <z mq...q <v/d,
(3.11) 2" < @1 < g <z, maq...q <v/d.
The first of the subtracted pair of sums has an asymptotic formula with

error exp (—% log ;‘;) by Lemma 4, and the subsum of the second of the pair

complementary to > . ; has an asymptotic formula with error z=", since

Jj+1
(3.12) v/d<maq ...q+1 < (v/d)gi1 < (v/d)w =v/ec.

The residual sum is > 1. After Oc(1) steps the residual sum is empty,
giving a decomposition of > S(A,,, z) into a main term and an error term.

11



A corresponding decomposition applies to Y S(B,,,z), and just as in the
P
proof of [2], Lemma 13, (3.9) has an asymptotic formula with error

n~12Y " exp (—E log E) < €.
n n

This completes the proof of the case (3.7). The case (3.8) is very similar,
with v/b and w in the roles of v/d and w’ : thus (3.12) is replaced by

v/b<mgq...q+1 < (v/b)gj+1 < (v/b)w =v/a.

84 Assembling the components of the final de-
composition.
For each 6, we shall in §5 make a “final decomposition’ of S(A, (ev)'/?) and a

corresponding decomposition of S(B, (ev)'/?), using Buchstab’s identity and,
in some cases, role reversals. Let us say this takes the form

S(A, (ev)'/?) ZS - Z Sj.

j=k+1
14
S(B, (ev)'/?) ZS* > s
j=k+1

Here S; > 0, S7 > 0 and for j < k and, say, kE+1<j<t (wheret </) we
have

S; =S5 (1+ O(e)).
Thus we get the upper bound

S(.A, (6’(})1/2) < ( 61) 1/2 +ZS*) 1+O )

We strive to make the ‘discarded sums’ S;, with ¢ < k < £ as small as possible
(thinking of them as regions in Euclidean spaces).
The first step is

S(A, (ev)'?) = S(Aw)— > S(A,.p).

w<p<(ev)l/2

12



To continue the process for p € I, an interval where no asymptotic formula
is available for

(4.1) > S(Ayp),

pel

we need to give asymptotic formulae for

> S(Ay,w) and YD S(Auw)

pel pel wqg<p

where w* = w or w’ (depending on p, ¢). If this cannot be done, we discard
the sum (4.1). These remarks should give context to the lemmas in the
present section.

Lemma 8 Let 0 < 0.65 —¢, P < b%. Then

ZS(-A:mw)

p~P
has an asymptotic formula.
Proof. See [6], Lemma 6.7.

Lemma 9 Let ¢; <0 <5/8 —¢, w < Q < P < (ev)Y?, and suppose that

PQ?* < v,
P,Q arenotin [a,b]U]lc,d]
PQ ¢ [vd™ ', ve U [ub™ va™ ).
Suppose further that either
(i) 0 <73/120 — ¢, or
(ii) P < g'/2=p=1/2,

Then

Z Z S(Apg, w')

p~P g~Q

has an asymptotic formula.

13



Proof.
(i) If @ < a, we can apply Lemma 6, since

P < (ev)? < 2Y?/a.
Thus we may suppose that () > b. We cannot have P > d, since
b2d _ $11/2—89—3e > vre.

Thus we have
Q< P<ec

Accordingly,
PQ < ? < a7 =vpa .

Hence we have

PQ < vb ™1,
and the result follows from Lemma 7.
(ii) We have
PQ <z' % <v/e

Hence P(Q) < v/d, and we may apply Lemma 7.

Lemma 10 Suppose that 6 € [% — €, % — e} and evb™% < P < (ev)'?, and

either P < x*°%a~1 or§ < it —€ and P > z*°"*a~'. Then

(42) > S(Ap) =Y S(Byp)(1+0(e)) — Sv.

p~P p~P

Here Sy is defined as follows. For P < x*/°=2¢q~1,

(4.3) Sv =Y S(Bygr. 7).

Here V 1is the region

1/2 1/2

p~P w<r<qg<a, ¢g<(ev/p)’*, r<(ev/pg)’~,

where it is understood that no combination of the variables satisfies the re-
quirements of Lemma 5.

14



For 0 < 11/18 — ¢, P > x*°%a™', we have
(4.4) Sv =Y S(Buguu
v

where V is the set of conditions

mq~ P, w<q<a, Q(m)>q, w<u<(ev/P)"”.
Again, no combination of the variables m, q, u satisfies the requirements of
Lemma 5.
Proof. This is essentially Lemma 6.8 of [6], using Lemma 5 in place of the
corresponding result in [6].

The role reversal used in the second part of Lemma 10 does not yield
useful results if we extend it beyond 6 = ¢5. We now treat a role reversal for

(4.5) Y S(Aup)

where we assume that

73
- < -1
120 e<O<¢y and b< P <uwg

Besides primes ¢ with pg € A, the above sum counts pgiqs € A with p <
¢1 < q2. The dependence of ¢; on p suggests that we first show that

> S(App) =) S(A, P) +o( "> 8B, )

p~P p~P p~P

Clearly it suffices to show that

(4.6) > 1=0 <L—1 > S8, p)> .

pq1q2€A p~P
p~P, q1<q2
P<q1<p

The left-hand side of (4.6) is

Y
< S(Ayg,, P) =0
— ZP ( Pq ) ZP pqu
p~ b~
quUP*2 qu’L}P72
=O0(yL™)

15



from Lemma 4, since vP~! > g. This implies (4.6).
We now proceed as in [6], §6.6. The sum (4.5) is, with acceptable error,

{pl:ple A p~ P, Q) > P}

= 37 S(A(0), 2P)),

{=v/P
Q)>P

where
All)={m :m ~ P, ml € A}.
We rewrite the sum over ¢ as

> SAW)w) — > S(A)q).

{=xv/P ¢
QU)>P w<q<(2P)1/?

The first of the subtracted pair of sums has an asymptotic formula by Lemma
7, since v/P > g. For the second sum, we note that

13/8+¢,,~5/

g<z 2<a

since 6 > 17/28. We reverse roles again:

Y. SAOga) = D S(Amg (er/P)V).

12 mgq~P
w§q<(2P)1/2 w§q<(2P)1/2
Q(m)>q
Since m < z3/4+3~1 < b . we can restrict attention to m < a in the last

expression. Now m is prime, since w? > a; write m = r. Apply Buchstab
once more:

> S(Awg, (ev/P)?)

rq~P
w<g<r<a

= Y SAgpw) = D S

rq~P rq~P
w<lg<r<a w<g<r<a
w<u< (ev)P)1/2

The first sum on the right-hand side satisfies the requirements of Lemma 6.
We discard those parts of the second sum for which we cannot give an asymp-
totic formula by Lemma 5. This establishes the first part of the following
result.

16



Lemma 11 Suppose that %30 —e<O< % and either

(i) 0 <1 andb< P <uvg™
or
(i1) P < x'/?~cp=1/2,

Then (4.1) holds. In (i),

Sv = S(Brgu,u)

v

and ¥ 1s the part of the region
rq~P, w<qg<r<a, w<u< (ev/P)"?

where no combination of variables satisfies the conditions of Lemma 5. In
(i),
Sv =Y S(Bygr, 1),
v

and ¥V 1s the part of the region
(4.7) p~ P w <r<q<p, r<(ev/pg)?

where no combination of variables satisfies the conditions of Lemma 5, and
w” =w or w' depending on whether ¢ < a or q > b.

For the second part of the lemma, we apply Buchstab twice to the sum
(4.5), taking into account Lemma 9 (ii). We then discard the part of

Z S(Apgr,T)
(4.7)

to which Lemma 5 does not apply.

§5 Completion of the proof of the Theorem.

As noted in the introduction, our treatment is just as in [6], §6.7 for 6 >
5/8 — €. For the moment, suppose that ¢; < 6 < g — e. We begin our final

17



decomposition with

(5'1) S(A> (€U>1/2) = S(A> w) - Z S(Apvp) - Z S(Ap,p)

w<p<a p€la,blU|c,d]

- > S(A.p).
b<p<(ev)l/?
pé|c,d]

251—52—53—54,say.

We have asymptotic formulae for S; and S3. The treatment of Sy and Sy
raises several questions, the answers depending on 6.

(i) Is there an interval of p within Sy for which an asymptotic formula
holds?

(ii) For the rest of Sy and Sy, which intervals I of p permit two further
decompositions, in the sense

(5.2) D S(Ap) =) S(Ayw) = Y S( Ay, w)

pel pel pel
q€Jp
w<q<p
/
+ E , S(qurar) - E S(qu’w)
pel pel
q€Jdp q¢Jp
w<r<g<p w'<g<p
+ g S(Apgr,T)
pel
QQJP
w/'<r<q<p

=55 =S¢+ 57— Ss + 5,
say”?

(iii) In S7, Sy, which portions permit two more decompositions to obtain
sums

(5.3) Z S (Apgr, wi) — Z S (Apgrs, w2)

37 5 (A )
= S10 — Si1 + Si2, say?

18



How do we choose w; and ws according to the region in which (p,q, ),
(p,q, 7, 5) lie?

(iv) Are there further intervals of p in which a role reversal in

(5.4) > S(App)

pel

is to be preferred to discarding the sum in (5.4)?

(v) Can a small part of (5.4) be recovered, rather than discarding all of
it?

Of course, a decomposition terminates if some combination of variables
allows us to apply Lemma 5. For example, we do not decompose further the
portion of S; with pgr € [¢,d|. There are seven Buchstab decompositions in
some cases; these will be noted below.

We write I
T(0) =—5(0).
Y
For simplicity of writing, we ignore any terms in the construction of an upper

bound for 7'(¢) which are O(e).
We now provide answers to (i)-(v) above.

(i) For 6 < 11/18, we have w? > a and (as in [6]) there is an asymptotic
formula for the part S} of Sy with p < b*/2. For § > 11/18 there is nothing
corresponding to S%.

(ii) For 6 < 73/120, (5.2) is applied for I = (b*/2,a), (b,c), (d,v'/?), and
J,, consists of (w,a). For p < o2 implies p < x'/2a™'. If ¢ > b, we place
(p,q) in Ss, since pg® < v implies pg < vb~ L.

For 6 € (5,11, (5.2) is applied for p < (z/v)"/? and d < p < 291079,
Note that if p > d, then ¢ < b since db* > v; in this case, J, = (w, a). In fact,
since (z/v)Y? < 29190 ], = (w, a) for p < (z/v)'/?; while for p < (x/v)"/?,
q > a, we may place (p, q) in Sg since pg < z/v implies pg < v/c.

For 6 € (1, 43), we apply (5.2) for p < (z/v)"/?, with J, = (w, a), arguing
as in the last paragraph.

For 6 € (%,g), we apply (5.2) for p < a, with J, = (w,a). The point
here is that w’ is too small for numerical results arising from Lemma 7 to be

helpful.
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(iii) We carry out two more decompositions if either

(a) p,q,r,7 can be combined into two products m,n with m < z7a™!,

n < a; or

(b) pgr* < wv/c; or

(c) 0 < 73/120 and pqr? < x'/2; or
(d) B <6 <3 and
(

120 607’

1) p,q,r can be combined into two products m,n with m < 29109,

n < a, or else pgr < v/d;
(1) pgrw > g and pqr® < z'/2.

If (a) is satisfied, we apply Lemma 6 to Sio and Sy;. If (b) is satisfied,
then we apply Lemma 7 to S, and to S1g we can definitely apply Lemma 7
and may be able to apply Lemma 6. If (c) is satisfied, we can apply Lemma
6 or 7 to Sho, S11. Since for w < r < s, (1) implies

g < pgrs < z'/?,

we can apply Lemma 7 in case (d) to Si;, and either Lemma 6 or 7 applies
to Syp. It is clear that, for 6 > }—é, we always apply Lemma 6 in preference
to Lemma 7 if the necessary hypotheses are fulfilled, and this determines w;

and ws.

(iv) A role reversal based on Lemma 10 (ii) is used for 55 < 6 < 1i,
p> 29101,
A role reversal based on Lemma 11 is used for % < 0 < %, p E

((x/v)Y2,vg71). The latter interval disappears for § > 11/18.

(v) According to (i)-(iv), S(A,,p) is discarded for vg™' < p < ¢, if

2

0 (%,}—é); for p € (%,c) and p € (d,v'/?), if }—é <6< g; and for

p € (b,c) and p € (d,v"/?), if 6 > 13/21.

Ifoe (%, %), then p
c<v

by a generous margin. From the discarded terms S(A,,p), we can recover
those pgr in Awithb<p<qg<r,c<r<d.
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Seven-dimensional integrals arise for 6 € (é—g, g), since then w® < v/b,

and it can happen that in Si9, p,q,7,s,t,u permits a treatment similar to
that in (iii) whenever w < u < t: for 6 close to i, this would depend on the

inequalities

28’

pqrstu < pqrst2 , pqrstu > pqrstw.

The above discussion will enable the reader to write down the multidi-
mensional integrals Iy, ..., I such that

1
(5.5) ﬂ®§§+h+m+h.

In the case 6 € (42, 2), there is a further integral arising from (v),

(1-6)/2 prl1-0—« dﬁ dov
=
i 1/6 max 39—7—aa 52 @2

such that
1
(5.6) ﬂ®§5+h+m+h—h%
For integrals similar to I, ..., I, see the discussion in [6], §6.7.

The conclusions that we obtain from (5.5), (5.6) are as follows. We have
(5.7) /@ 0T (6)d6 < 0.01153.
(Note how close this is to th; conjectural value 0.01111...). Further,
(5.8) / " 07 (6)d8 < 012455
Of course, the saving in (5.82) compared with [6] comes only from ¢y < 6 <

5/8.
Just as in [6],

@8
(5.9) 0T (6)do < 0.17597,
¢4
and
o9
(5.10) 0T (0)df < = (¢9 ¢3) < 0.088.
(o]

We may combine (5.7)—(5.10) to give (1.2). This completes the proof of the
Theorem.
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