Outcome A: Recall and apply the formula for arc length of a space curve.

The **arc length** of the space curve parameterized by the differentiable vector function
\(\vec{r}(t) = (f(t), g(t), h(t)), a \leq t \leq b, \) is

\[
L = \int_a^b \| \vec{r}'(t) \| \, dt
= \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2} \, dt
= \int_a^b \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2} \, dt.
\]

If we think of \(\vec{r}'(t) \) as the velocity of a particle moving along the curve \(\vec{r}(t), \) then \(\| \vec{r}'(t) \| \) is the speed of the particle, and the arc length formula says that the distance traveled is the integral of the speed times time.

Example. The arc length the space curve parameterized by \(\vec{r}(t) = (12t, 8t^{3/2}, 3t^2), 0 \leq t \leq 1, \) is

\[
L = \int_0^1 \sqrt{[12]^2 + [12t^{1/2}]^2 + [6t]^2} \, dt = \int_0^1 \sqrt{144 + 144t + 36t^2} \, dt
= 6 \int_0^1 \sqrt{4 + 4t + t^2} \, dt = 6 \int_0^1 \sqrt{(t + 2)^2} \, dt
= 6 \int_0^1 (t + 2) \, dt \quad \text{[no absolute value because } t + 2 \geq 0 \text{ on } 0 \leq t \leq 1]\]
\[
= 6 \left[\frac{t^2}{2} + 2t \right]_0^1 = 6 \left[\frac{1}{2} + 2 \right] = 15.
\]

Here is a picture of this space curve whose arc length is 15.
Outcome B: Find the arc length function and reparameterize a vector function by arc length.

Example. The curve parameterized by \(\vec{r}_1(t) = (t, t^2, t^3), 1 \leq t \leq 2 \) is the same as the curve parameterized by \(\vec{r}_2(u) = (e^u, e^{2u}, e^{3u}), 0 \leq u \leq \ln 2 \).

This is because the one-to-one change of variable \(t = e^u \) gives \(t^2 = e^{2u}, \ t^3 = e^{3u} \), with \(t = 1 \) corresponding to \(u = 0 \) and \(t = 2 \) corresponding to \(u = \ln 2 \).

The one-to-one change of variable in this Example is called a reparameterization of the curve.

We can reparameterize a curve by its arc length.

Suppose a curve \(C \) is the graph of \(\vec{r}(t) = (f(t), g(t), h(t)), a \leq t \leq b \), where \(\vec{r}' \) is continuous, and \(C \) is traversed exactly once as \(t \) increases from \(t = a \) to \(t = b \).

The arc length function \(s \) is defined by
\[
s(t) = \int_a^t \| \vec{r}'(u) \| \, du = \int_a^t \sqrt{\left[f'(u)\right]^2 + \left[g'(u)\right]^2 + \left[h'(u)\right]^2} \, du.
\]

By the Fundamental Theorem of Calculus, we have
\[
\frac{ds}{dt} = \| \vec{r}'(t) \|.
\]

The assumption of traversing the curve exactly once implies that \(\| \vec{r}'(t) \| > 0 \) except at finitely many values of \(t \) in \([a, b]\).

This means that the arc length \(s \) is an invertible function of \(t \): there is a function \(t = t(s) \) that is the inverse of \(s = s(t) \).

The function \(t = t(s) \) says that one unit of arc length along the curve is achieved at the value \(t = t(1) \), two units of arc length are achieved at \(t = t(2) \), etc.

The composition \(\vec{r}(t(s)) \) is the reparameterization of the curve by arc length.

NOTE: it is generally impossible to find explicitly the inverse function needed for this reparameterization by arc length.

Example. The arc length function for \(\vec{r}(t) = (12t, 8t^{3/2}, 3t^2), 0 \leq t \leq 1 \), is
\[
s(t) = 6 \int_0^t (u + 2) \, du = 6 \left[\frac{u^2}{2} + 2u \right]_0^t = 6 \left[\frac{t^2}{2} + 2t \right] = 3t^2 + 12t.
\]

We find the inverse of this arc length function by the quadratic formula:
\[
t = \frac{-12 + \sqrt{144 + 12s}}{6}, \quad 0 \leq s \leq 15.
\]

The reparameterization of the curve by arc length is
\[
\vec{r}(t(s)) = \left\langle 12\left(\frac{-12 + \sqrt{144 + 12s}}{6}\right), 8\left(\frac{-12 + \sqrt{144 + 12s}}{6}\right)^{3/2}, 3\left(\frac{-12 + \sqrt{144 + 12s}}{6}\right)^2 \right\rangle.
\]
Outcome C: Recall and apply the definition of curvature for a smooth curve.

A parameterization $\vec{r}(t)$ of a curve is called smooth on an interval I if \vec{r}' is continuous and $\vec{r}'(t) \neq 0$ on I.

A curve is called smooth if it has a smooth parameterization.

NOTE: smooth curves have continuous tangent vectors, i.e., no corners or cusps.

Recall that the unit tangent vector is $\vec{T}(t) = \vec{r}'(t)/\|\vec{r}'(t)\|$, which is continuous and never zero for a smooth curve.

The notion of curvature is a measurement of how quickly the curve changes direction, i.e., the magnitude of the rate of change of the unit tangent vector with respect to arc length.

The curvature of a smooth curve is the quantity

$$\kappa = \left\| \frac{d\vec{T}}{ds} \right\| = \left\| \frac{d\vec{T}}{ds/dt} \right\| / \|\vec{r}'(t)\|^3.$$

Example. For the circle $\vec{r}(t) = \langle a \cos t, a \sin t, 0 \rangle$ of center $(0,0,0)$ and radius a lying in the xy-plane, we have

$$\vec{r}'(t) = \langle -a \sin t, a \cos t, 0 \rangle,$$

$$\vec{r}''(t) = \langle -a \cos t, -a \sin t, 0 \rangle,$$

Thus $\|\vec{T}'(t)\| = 1$, and so $\kappa(t) = 1/a$, the reciprocal of the radius.

Outcome D: Compute the curvature of a smooth curve using the formula on p.880.

The geometric definition of curvature is awkward computationally. Here is a much more computationally friendly formula.

Theorem. The curvature of a smooth space curve is

$$\kappa(t) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3}.$$

The proof of this is in the appendix of this lecture note.

Example. For $\vec{r}(t) = \langle 12t, 8t^{3/2}, 3t^2 \rangle$, we have

$$\vec{r}'(t) = \langle 12, 12t^{1/2}, 6t \rangle,$$

$$\vec{r}''(t) = \langle 0, 6t^{-1/2}, 6 \rangle,$$

and so

$$\vec{r}'(t) \times \vec{r}''(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 12 & 12t^{1/2} & 6t \\ 0 & 6t^{-1/2} & 6 \end{vmatrix} = \langle 36t^{1/2}, -72, 72t^{-1/2} \rangle.$$

The curvature is

$$\kappa(t) = \frac{\sqrt{1296t + 5184 + 5184t^{-1}}}{(144 + 144t + 36t^2)^{3/2}}.$$
At the point on the curve corresponding to \(t = 1/2 \), the curvature is

\[
\kappa(1/2) = \frac{\sqrt{16200}}{(225)^{3/2}} \approx 0.0377,
\]
i.e., the curve is bending at \(t = 1/2 \) as though it were on a circle of radius \(1/\kappa(1/2) \approx 26.5 \).

Outcome E: Find the principal unit normal vector, binormal vector, the normal plane, and the osculating plane for a smooth curve.

There are two more unit vectors, in addition to the unit tangent vector, associated to a smooth curve.

The **principal unit vector**, or simply the **unit normal** is

\[
\vec{N}(t) = \frac{\vec{T}'(t)}{\|\vec{T}'(t)\|},
\]
which is orthogonal to \(\vec{T}(t) \) because \(1 = \|\vec{T}(t)\|^2 = \vec{T}(t) \cdot \vec{T}(t) \) differentiates to \(0 = 2\vec{T}(t) \cdot \vec{T}'(t) \).

The **binormal vector** is

\[
\vec{B}(t) = \vec{T}(t) \times \vec{N}(t),
\]
which is orthogonal to both vectors \(\vec{T}(t) \) and \(\vec{N}(t) \) of length one, and because the angle between \(\vec{T}(t) \) and \(\vec{N}(t) \) is \(\pi/2 \), has a length of 1.

The **normal plane** of a smooth curve \(\vec{r}(t) \) at a point \(\vec{r}(t_0) \) is the plane determined by the normal and binormal vectors, i.e., by the unit tangent vector \(\vec{T}(t_0) \) (as a vector normal to the plane) and the point \(\vec{r}(t_0) \).

The **osculating** plane of a curve \(\vec{r}(t) \) at a point \(\vec{r}(t_0) \) is the plane determined by the unit tangent vector and the principle unit vector, i.e, by the binormal vector \(\vec{B}(t_0) \) (as the vector normal to the plane) and the point \(\vec{r}(t_0) \).

Example. Here is a picture with the three unit vectors associated to \(\vec{r}(t) = \langle 12t, 8t^{3/2}, 3t^2 \rangle \), \(0 \leq t \leq 1 \), at five different points on the curve.

![Diagram of unit vectors and osculating plane](image-url)
Appendix. The proof of the formula for curvature is a matter of showing that

\[||\vec{T}'(t)|| = \frac{||\vec{r}'(t) \times \vec{r}''(t)||}{||\vec{r}'(t)||^2}. \]

Well, \(\vec{T} = \vec{r}'/||\vec{r}'|| \) and \(||\vec{r}'|| = ds/dt \), so that

\[\vec{r}' = ||\vec{r}'||\vec{T} = \frac{ds}{dt}\vec{T}. \]

Differentiation of this (by the Product Rule) gives

\[\vec{r}'' = \frac{d^2s}{dt^2}\vec{T} + \frac{ds}{dt}\vec{T}'. \]

The cross product of the first and second derivatives of \(\vec{r} \) is then

\[\vec{r}' \times \vec{r}'' = \frac{ds}{dt}\vec{T} \times \left(\frac{d^2s}{dt^2}\vec{T} + \frac{ds}{dt}\vec{T}' \right) = \frac{ds}{dt} \frac{ds}{dt} \vec{T} \times \vec{T} + \left(\frac{ds}{dt} \right)^2 \vec{T} \times \vec{T}'. \]

Since the angle between \(\vec{T} \) and \(\vec{T}' \) is 0, the formula \(||\vec{a} \times \vec{b}|| = ||\vec{a}|| \ ||\vec{b}|| \sin \theta \) implies that \(\vec{T} \times \vec{T}' = \vec{0} \). Differentiation of 1 = \(||\vec{T}(t)||^2 = \vec{T}(t) \cdot \vec{T}(t) \) gives 0 = \(2\vec{T}(t) \cdot \vec{T}'(t) \). Thus the angle between \(\vec{T} \) and \(\vec{T}' \) is \(\theta = \pi/2 \), and so the formula \(||\vec{a} \times \vec{b}|| = ||\vec{a}|| \ ||\vec{b}|| \sin \theta \) implies that

\[||\vec{r}' \times \vec{r}''|| = \left(\frac{ds}{dt} \right)^2 ||\vec{T}|| \ ||\vec{T}'|| = \left(\frac{ds}{dt} \right)^2 ||\vec{T}'||. \]

Dividing both sides by \((ds/dt)^2 \) and substituting \(||\vec{r}'(t)|| \) for \(ds/dt \) gives the result. \(\square \)