Outcome A: Evaluate the line integral of a function along a piecewise smooth curve with respect to arc length.

Let $\vec{r}(t)$, $a \leq t \leq b$, be a smooth curve C in \mathbb{R}^2 or \mathbb{R}^3, i.e., $\vec{r}'(t)$ is continuous and $\vec{r}''(t) \neq 0$, and that $\vec{r}(t)$ traverses C exactly once.

Let s be the arc length function for $\vec{r}(t)$, i.e., $ds/dt = \|\vec{r}'(t)\|$ and $s(a) = 0$.

The line integral of a function f continuous on the smooth curve C with respect to arc length is

$$\int_C f \, ds = \int_a^b f(\vec{r}(t))\|\vec{r}'(t)\| \, dt.$$

The value of the line integral does not depend on the parameterization $\vec{r}(t)$ of C chosen as along as $\vec{r}(t)$ is smooth and traverses C exactly once.

When $f = 1$ along C, the line integral gives the arc length of C.

Now suppose that C is a piecewise smooth curve, i.e., it is the union of a finite number of smooth curves C_1, \ldots, C_n, where the terminal point of C_i is the starting point of C_{i+1}.

The line integral of a function f continuous on the piecewise smooth curve C with respect to arc length is

$$\int_C f \, ds = \int_{C_1} f \, ds + \cdots + \int_{C_n} f \, ds.$$

Example. Let $f(x, y, z) = x + y + z$ and let C be the union of the straight line segments C_1 from $(-1, 5, 0)$ to $(1, 6, 4)$ and C_2 from $(1, 6, 4)$ to $(0, 1, 1)$.

We parameterize a line segment from \vec{a} to \vec{b} in the standard way of

$$\vec{r}(t) = (1 - t)\vec{a} + t\vec{b}, \quad 0 \leq t \leq 1.$$

Thus a smooth parameterization of C_1 is

$$\vec{r}_1(t) = (1 - t)(-1, 5, 0) + t(1, 6, 4) = (2t - 1, t + 5, 4t), \quad 0 \leq t \leq 1,$n

and a smooth parameterization of C_2 is

$$\vec{r}_2(t) = (1 - t)(1, 6, 4) + t(0, 1, 1) = (-t + 1, -5t + 6, -3t + 4), \quad 0 \leq t \leq 1.$$

For these we have

$$\vec{r}_1''(t) = (2, 1, 4), \quad \vec{r}_2''(t) = (-1, -5, -3),$$

and so

$$\|\vec{r}_1''(t)\| = \sqrt{21}, \quad \|\vec{r}_2''(t)\| = \sqrt{35}.$$
The line integral of \(f \) along \(C \) with respect to arc length is
\[
\int_C f \, ds = \int_{C_1} f \, ds + \int_{C_2} f \, ds
\]
\[
= \int_0^1 (7t + 4)\sqrt{21} \, dt + \int_0^1 (-9t + 11)\sqrt{35} \, dt
\]
\[
= \sqrt{21} \left[\frac{7t^2}{2} + 4t \right]_0^1 + \sqrt{35} \left[-\frac{9t^2}{2} + 11t \right]_0^1
\]
\[
= \frac{15\sqrt{21} + 13\sqrt{35}}{2}
\]

Outcome B: Find the mass and center of mass of a thin wire given its shape and linear density.

For a thin wire in the shape of a curve \(C \) in the \(xy \)-plane and linear density \(\rho(x, y) \) on \(C \), the mass \(m \) of the thin wire is the line integral of the linear density along \(C \) with respect to arc length:
\[
m = \int_C \rho(x, y) \, ds.
\]
The center of mass \((\bar{x}, \bar{y})\) of such a thin wire has components
\[
\bar{x} = \frac{1}{m} \int_C x \rho(x, y) \, ds, \quad \bar{y} = \frac{1}{m} \int_C y \rho(x, y) \, ds.
\]
[The mass and center of mass extends readily to thin wires in \(\mathbb{R}^3 \).]

Example. A thin wire is in the shape of \(y = \sqrt{4 - x^2}, 0 \leq x \leq 2 \), with a linear density of \(\rho(x, y) = x \).

A standard parameterization of \(x^2 + y^2 = 4, 0 \leq x \leq 2 \), is \(\vec{r}(t) = \langle 2\cos t, 2\sin t \rangle \), \(0 \leq t \leq \pi/2 \), where \(\|\vec{r}'(t)\| = 2 \).

The mass of this wire is
\[
m = \int_C \rho \, ds = 4 \int_0^{\pi/2} \cos t \, dt = 4 \left[\sin t \right]_0^{\pi/2} = 4.
\]
The components of the center of mass are
\[
\bar{x} = \frac{1}{m} \int_C x \rho(x, y) \, ds = \frac{8}{4} \int_0^{\pi/2} \cos^2 t \, dt = 2 \left[\frac{t}{2} + \frac{\sin 2t}{4} \right]_0^{\pi/2} = \frac{\pi}{2},
\]
and
\[
\bar{y} = \frac{1}{m} \int_C y \rho(x, y) \, ds = \frac{8}{4} \int_0^{\pi/2} \sin t \cos t \, dt = 2 \left[\frac{\sin^2 t}{2} \right]_0^{\pi/2} = 1.
\]

Outcome C: Evaluate the line integral of a function along piecewise smooth curve with respect to \(x, y, \) or \(z \).

More line integrals of \(f \) are obtained by replacing \(ds \) with other differentials.
Let C be a smooth curve parameterized by $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, $a \leq t \leq b$.

The line integrals of functions P, Q, and R along C with respect to x, y, and z are respectively

$$\int_C P \, dx = \int_a^b P(\vec{r}(t)) x'(t) \, dt,$$
$$\int_C Q \, dy = \int_a^b Q(\vec{r}(t)) y'(t) \, dt,$$
$$\int_C R \, dz = \int_a^b R(\vec{r}(t)) z'(t) \, dt.$$

These can be combined into one line integral as

$$\int_C P \, dx + Q \, dy + R \, dz = \int_a^b \left(P(\vec{r}(t)) x'(t) + Q(\vec{r}(t)) y'(t) + R(\vec{r}(t)) z'(t) \right) \, dt.$$

When there are only two variables x and y, i.e., when $\vec{r}(t) = \langle x(t), y(t) \rangle$ and P and Q are just functions of x and y, this line integral becomes

$$\int_C P \, dx + Q \, dy = \int_a^b \left(P(\vec{r}(t)) x'(t) + Q(\vec{r}(t)) y'(t) \right) \, dt.$$

The choice of parameterization $\vec{r}(t)$, $a \leq t \leq b$, of C determines an orientation of C, i.e., the direction of motion along C corresponding to increasing the value of t.

Reparameterizing the curve C by $\vec{r}(b + a - t)$ gives the opposite orientation of C, and this oppositely orientated curve is denoted by $-C$.

Because switching the orientation of a curve changes the signs of $x'(t)$, $y'(t)$, and $z'(t)$, the relationship of the line integrals over C and $-C$ is

$$\int_{-C} P \, dx + Q \, dy + R \, dz = - \int_C P \, dx + Q \, dy + R \, dz.$$

This does not happen with line integrals with respect to arc length, because ds does not change sign with the opposite orientation.

For a piecewise smooth curve C, we add up the line integrals with respect to x, y, and z over each smooth component C_i, ensuring that we have not inadvertently switched the orientation of C_i by our choice of its parameterization.

Example. Let C be the piecewise smooth boundary of the region $\{(x, y) : 0 \leq x, y \leq 1\}$, with a counterclockwise orientation.

Let C_1 be the bottom line segment; a parameterization for C_1 is $\vec{r}(t) = \langle t, 0 \rangle$, $0 \leq t \leq 1$.

Let C_2 be the right line segment; a parameterization of C_2 is $\vec{r}(t) = \langle 1, t \rangle$, $0 \leq t \leq 1$.

Let C_3 be the top line segment; a parameterization of C_3 is $\vec{r}(t) = \langle t, 1 \rangle$, $0 \leq t \leq 1$.

Let C_4 be the left line segment; a parameterization of C_4 is $\vec{r}(t) = \langle 0, t \rangle$, $0 \leq t \leq 1$.
Are all of these line segments oriented correctly? C_1 and C_2 are orientated counterclockwise, but C_3 and C_4 are oriented clockwise.

And so we write $C = C_1 + C_2 - C_3 - C_4$.

For $P(x,y) = -y/2$ and $Q(x,y) = x/2$, the line integral over C is

$$\int_C Pdx + Qdy = \int_{C_1} Pdx + Qdy + \int_{C_2} Pdx + Qdy - \int_{C_3} Pdx + Qdy - \int_{C_4} Pdx + Qdy$$

$$= \int_0^1 (0)(1dt) + (t/2)(0dt) + \int_0^1 (-t/2)(0dt) + (1/2)(1dt)$$

$$- \int_0^1 (-1/2)(1dt) + (t/2)(0dt) - \int_0^1 (-t/2)(0dt) + (0)(1dt)$$

$$= 0 + 1/2 - (-1/2) + 0$$

$$= 1.$$

Curious that this line integral is equal to the area of the region which C bounds. (More on this later in the week!)

Outcome D: Evaluate the line integral of a vector field along a piecewise smooth curve.

The **line integral** of a continuous vector field \vec{F} along a smooth curve C parameterized by $\vec{r}(t)$, $a \leq t \leq b$ is

$$\int_C \vec{F} \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt.$$

When we write $\vec{F} = \langle P, Q, R \rangle$ and $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, we have

$$\int_C \vec{F} \cdot d\vec{r} = \int_a^b \langle P(\vec{r}(t)), Q(\vec{r}(t)), R(\vec{r}(t)) \rangle \cdot \langle x'(t), y'(t), z'(t) \rangle \, dt$$

$$= \int_a^b (P(\vec{r}(t))x'(t) + Q(\vec{r}(t))y'(t) + R(\vec{r}(t))z'(t)) \, dt$$

$$= \int_C Pdx + Qdy + Rdz.$$

So evaluating the line integral of \vec{F} along smooth or piecewise smooth C is done as we saw previously.

Since $ds/dt = \|\vec{r}'(t)\|$ and $\vec{T}(t) = \vec{r}'(t)/\|\vec{r}'(t)\|$ (the unit tangent vector), we also have

$$\int_C \vec{F} \cdot d\vec{r} = \int_C \vec{F} \cdot \vec{T} \, ds.$$

The line integral of \vec{F} along C represents the **work done** by the tangential component of the force \vec{F} along C.