Math 341 Lecture #19
§4.1: Examples of Dirichlet and Thomae

We begin a discussion about the continuity of a function \(f: A \to \mathbb{R} \), for a nonempty \(A \subset \mathbb{R} \).

Recall from Calculus I that we say \(f \) is continuous at a point \(a \in \mathbb{R} \) if \(f(a) \) exists (i.e., \(a \in A \)), \(\lim_{x \to a} f(x) \) exists, and \(\lim_{x \to a} f(x) = f(a) \).

[We are leaving the notion of the limit of a function vague for now; we will see the rigorous definition next time.]

For a function \(f: A \to \mathbb{R} \), we let \(D_f \) denote the set of points in \(A \) where \(f \) is not continuous.

What kind of a subset of \(\mathbb{R} \) can \(D_f \) be?

Example. Dirichlet defined a function \(g: \mathbb{R} \to \mathbb{R} \) by

\[
g(x) = \begin{cases}
1 & \text{if } x \in \mathbb{Q}, \\
0 & \text{if } x \notin \mathbb{Q}.
\end{cases}
\]

For any \(c \in \mathbb{R} \) we can find sequences \((x_n) \) in \(\mathbb{Q} \) and \((y_n) \) in \(\mathbb{Q}^c \) such that \(x_n \to c \) and \(y_n \to c \), but for which \(g(x_n) = 1 \) and \(g(y_n) = 0 \) for all \(n \in \mathbb{N} \), so that

\[
\lim_{n \to \infty} g(x_n) \neq \lim_{n \to \infty} g(y_n).
\]

This suggests that \(f \) is not continuous at \(c \), and as \(c \) was arbitrary, that \(f \) is not continuous at any \(c \in \mathbb{R} \).

We have that \(D_g = \mathbb{R} \).

Example. A modification of Dirichlet’s function results in a function that is continuous at just one point.

Define \(h: \mathbb{R} \to \mathbb{R} \) by

\[
h(x) = \begin{cases}
x & \text{if } x \in \mathbb{Q}, \\
0 & \text{if } x \notin \mathbb{Q}.
\end{cases}
\]

For a nonzero \(c \) we can find sequences \((x_n) \) in \(\mathbb{Q} \) and \((y_n) \) in \(\mathbb{Q}^c \) such that \(x_n \to c \) and \(y_n \to c \), but for which \(h(x_n) = x_n \) and \(h(y_n) = 0 \) for all \(n \in \mathbb{N} \), so that

\[
\lim_{n \to \infty} h(x_n) = c \neq 0 = \lim_{n \to \infty} h(y_n).
\]

This suggests that the function \(h \) is not continuous at any point \(c \neq 0 \).

However, if \(c = 0 \), then for any sequence \((z_n) \) in \(\mathbb{R} \) with \(z_n \to 0 \) we have \(|h(z_n)| \leq |z_n| \), so that \(h(z_n) \to 0 \) as well.

Thus \(h \) is continuous at \(c = 0 \).

We have that \(D_h = \mathbb{R} - \{0\} \).
Example. Thomae defined a function \(t : \mathbb{R} \to \mathbb{R} \) by

\[
t(x) = \begin{cases}
1 & \text{if } x = 0, \\
1/n & \text{if } x = m/n \in \mathbb{Q} \setminus \{0\} \text{ in lowest terms with } n > 0, \\
0 & \text{if } x \notin \mathbb{Q}.
\end{cases}
\]

For \(c \in \mathbb{Q} \), we have \(t(c) > 0 \).
For a sequence \((y_n) \in \mathbb{Q}^c \) such that \(y_n \to c \), we have \(t(y_n) = 0 \) for all \(n \in \mathbb{N} \), so that

\[
t(c) \neq 0 = \lim_{n \to \infty} t(y_n).
\]

This suggests that \(t \) is discontinuous at every rational point.
On the other hand, if \(c \) is irrational, we have \(t(c) = 0 \).
For any sequence \((x_n) \) in \(\mathbb{R} \) such that \(x_n \to c \) we have \(t(x_n) = 0 \) when \(x_n \notin \mathbb{Q} \) or \(t(x_n) \) is the reciprocal of the positive denominator of the rational \(x_n \) is lowest terms.
The closer \(x_n \) is to the irrational \(c \), the larger the denominator of \(x_n \) is, so that \(t(x_n) \) is as close to 0 as needed.
The result of this is that \(t(x_n) \to 0 \) as \(n \to \infty \), that is, we have

\[
\lim_{n \to \infty} t(x_n) = 0 = t(c),
\]
suggesting that \(t \) is continuous at every irrational \(c \).
We have that \(D_t = \mathbb{Q} \).

Example. Define a function \(s : \mathbb{R} \to \mathbb{R} \) by

\[
s(x) = [\lfloor x \rfloor]
\]
where \([x]\) is the largest integer \(n \) such that \(n \leq s \).
For \(c \in \mathbb{R} \) such that \(n < c < n + 1 \) for \(n \in \mathbb{N} \), we have for any sequence \((x_n) \) converging to \(c \) that

\[
\lim_{n \to \infty} s(x_n) = n = [\lfloor c \rfloor].
\]

On the other hand, for \(c = n \) for \(n \in \mathbb{N} \), we take a sequence \((y_n) \) such that \(n - 1 < y_n < n \) and \(y_n \to c \), so that

\[
\lim_{n \to \infty} s(y_n) = n - 1 \neq [\lfloor c \rfloor] = n.
\]
This suggests that \(s \) is discontinuous at every integer point, and we have that \(D_s = \mathbb{Z} \).

Example. Define a function \(f : \mathbb{R} \to \mathbb{R} \) by

\[
f(x) = \begin{cases}
0 & \text{if } x \leq 0, \\
x & \text{if } x \in \mathbb{Q} \cap (0, 1), \\
0 & \text{if } x \in (0, 1) - \mathbb{Q}, \\
0 & \text{if } x \geq 1.
\end{cases}
\]
The function is continuous at every \(c < 0 \) and at every \(c > 1 \).

As with the modified Dirichlet function, this function \(f \) is continuous at \(c = 0 \), but discontinuous at every \(c \in (0, 1) \).

This function is also discontinuous at \(c = 1 \) because for a rational sequence \((x_n)\) in \((0, 1)\) with \(x_n \to 1 \) we have \(f(x_n) = x_n \to 1 \), while for any sequence \((y_n)\) with \(y_n > 1 \) and \(y_n \to 1 \) we have \(f(y_n) \to 0 \).

So here we have \(D_f = (0, 1] \).

With all of the examples we have explored, what is the topological property shared by the set of discontinuities? Open, closed, compact, connected, \(F_\sigma, G_\delta \)?

If you are thinking an \(F_\sigma \) set, you are correct.

To prove this is somewhat involved, so we focus in Section 4.6 on a simpler class of functions \(f \) for which \(D_f \) is more readily understood.