Math 341 Lecture #24
§4.6: Sets of Discontinuity

We saw at the beginning of Chapter 4 that the set of discontinuities \(D_f \) for a function \(f : A \to \mathbb{R} \) appeared to always be an \(F_\sigma \) set (a countable union of closed sets).

We will prove this in the case when \(f \) is monotone.

Definition. 4.6.1. A function \(f : A \to \mathbb{R} \) is *increasing* on \(A \) if \(f(x) \leq f(y) \) whenever \(x < y \) for \(x, y \in A \), and is *decreasing* if \(f(x) \geq f(y) \) whenever \(x < y \) for \(x, y \in A \).

A function \(f : A \to \mathbb{R} \) is *monotone* if \(f \) is either increasing or decreasing.

The function \(s(x) = \lfloor x \rfloor \) on \(\mathbb{R} \) is monotone increasing.

In showing that \(s(x) \) is discontinuous at every integer point, we took a sequence \(y_n \) such that \(n - 1 < y_n < n \) and \(y_n \to n \).

This is a sequence that approaches \(n \) from the left.

We can talk about functional limits in the same way: from the left or from the right.

Definition. 4.6.2. Given a limit point \(c \) of a nonempty set \(A \) and a function \(f : A \to \mathbb{R} \) we say the limit of \(f(x) \) exists from the right and equals \(L \), and write

\[
\lim_{x \to c^+} f(x) = L,
\]

if for all \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(|f(x) - L| < \epsilon \) whenever \(0 < x - c < \delta \) and \(x \in A \).

In terms of sequences this is the same as \((x_n) \) in \(A \) with \(x_n > c \) and \(x_n \to c \), for which \(f(x_n) \to L \).

You have it as a homework problem (4.6.3) to state the definition of the limit from the left,

\[
\lim_{x \to c^-} f(x) = L.
\]

Recall that the limits from the right and from the left are related to the limit.

Theorem 4.6.3. Let \(f : A \to \mathbb{R} \) and \(c \) a limit point of \(A \). Then \(\lim_{x \to c} f(x) = L \) if and only if

\[
\lim_{x \to c^-} f(x) = L \quad \text{and} \quad \lim_{x \to c^+} f(x) = L.
\]

The discontinuities of a function can be divided into three categories.

(i) If \(\lim_{x \to c^-} f(x) \) exists but is not equal to \(f(c) \), then \(f \) has a *removable* discontinuity at \(c \).

(ii) If \(\lim_{x \to c^-} f(x) \) and \(\lim_{x \to c^+} f(x) \) both exist but are not equal, then \(f \) has a *jump* discontinuity at \(c \).

(iii) If \(\lim_{x \to c^-} f(x) \) does not exist for some other reason, then \(f \) has an *essential* discontinuity at \(c \).
The third category includes vertical asymptote type discontinuities, like $f(x) = \frac{1}{x}$ has at $x = 0$, and bounded oscillatory type discontinuities, like $f(x) = \sin(\frac{1}{x})$ has at $x = 0$.

A monotone function f, though, can have only one type of discontinuity, and this is what makes it easier to identify D_f in this case.

Theorem. If $f : \mathbb{R} \to \mathbb{R}$ is monotone, then

$$\lim_{x \to c^-} f(x) \text{ and } \lim_{x \to c^+} f(x)$$

exist at every at point c in \mathbb{R}.

Proof. WLOG, suppose that f is increasing.

For $c \in \mathbb{R}$ consider the nonempty subset $B = \{y = f(x) : x < c\}$ of \mathbb{R}.

Since f is increasing, the number $f(c)$ is an upper bound for A.

By the Axiom of Completeness, the number $\sup B$ exists.

The claim is that

$$\lim_{x \to c^-} f(x) = \sup B.$$

For $L = \sup B$, we have that for all $\epsilon > 0$ there exist $y_\epsilon \in B$ such that $L - \epsilon < y_\epsilon \leq L$.

Since $y_\epsilon \in B$, there is $x_\epsilon < c$ such that $f(x_\epsilon) = y_\epsilon$.

For any sequence (x_n) with $x_n < c$ and $x_n \to c$, there exists $N \in \mathbb{N}$ such that $x_\epsilon \leq x_n < c$ for all $n \geq N$.

Thus using the monotonicity of f, we have

$$L - \epsilon < y_\epsilon = f(x_\epsilon) \leq f(x_n) \leq L < L + \epsilon \text{ for all } n \geq N.$$

This says that $f(x_n) \to L$, and so $\lim_{x \to c^-} f(x)$ exists.

In a similar manner we show that $\lim_{x \to c^+} f(x)$ exists. \qed

Corollary (Exercise 4.6.5). A monotone function $f : \mathbb{R} \to \mathbb{R}$ can have only jump discontinuities.

Proof. By the Theorem, we have for each $c \in \mathbb{R}$ that

$$\lim_{x \to c^-} f(x), \lim_{x \to c^+} f(x)$$

both exist.

When these two limits agree, the function f is continuous at c by Theorem 4.6.3.

When these two limits disagree, the function f has a jump discontinuity with a jump of

$$\lim_{x \to c^+} f(x) - \lim_{x \to c^-} f(x)$$

at c.

The only discontinuities that a monotone function can have are jump discontinuities. \qed
Recall that the monotone function \(s(x) = \lfloor x \rfloor \) on \(\mathbb{R} \) has \(D_s = \mathbb{Z} \), i.e., a countable set of points where \(s(x) \) is not continuous.

You have it as a homework problem (4.6.6) to show for a monotone function \(f \) that there exists a bijection between \(D_f \) and a subset of \(\mathbb{Q} \).

Since every subset of \(\mathbb{Q} \) is an \(F_\sigma \) set, we will have shown that \(D_f \) is an \(F_\sigma \) set when \(f \) is monotone.