Inverse Substitutions by Trigonometric (Hyperbolic) Functions. Reversing the Substitution Rule sometimes leads to simpler integrals: if \(x = g(t) \) for \(g \) invertible and differentiable, then \(dx = g'(t)dt \) and

\[
\int f(x) \, dx = \int f(g(t))g'(t) \, dt.
\]

This kind of inverse substitution can give \(f(g(t))g'(t) \) as simpler to integrate than \(f(x) \).

The choice of \(g \) as a trigonometric or hyperbolic trigonometric function can eliminate square roots from the integrand.

Example 1. Evaluate \(\int \frac{1}{x^2\sqrt{x^2-9}} \, dx \).

We can use the trigonometric identity \(\sec^2 \theta - 1 = \tan^2 \theta \) to choose an inverse substitution:

\[x = 3 \sec \theta, \quad dx = 3 \sec \theta \tan \theta \, d\theta. \]

Why the factor of 3?

With this inverse substitution, the integral becomes

\[
\int \frac{1}{x^2\sqrt{x^2-9}} \, dx = \int \frac{3 \sec \theta \tan \theta}{9 \sec^2 \theta \sqrt{9 \sec^2 \theta - 9}} \, d\theta
= \int \frac{\sec \theta \tan \theta}{9 \sec^2 \theta \sqrt{\tan^2 \theta}} \, d\theta
= \int \frac{\sec \theta \tan \theta}{9 \sec^2 \theta |\tan \theta|} \, d\theta.
\]

Remember that \(\sqrt{y^2} = |y| \) in general, and that \(\sqrt{y^2} = y \) only if we known that \(y \geq 0 \).

So we ASSUME that \(\tan \theta \geq 0 \), so that \(|\tan \theta| = \tan \theta \), i.e., that \(0 < \theta < \pi/2 \).

With the assumption, the integral becomes

\[
\int \frac{1}{x^2\sqrt{x^2-9}} \, dx = \frac{1}{9} \int \frac{1}{\sec \theta} \, d\theta
= \frac{1}{9} \int \cos \theta \, d\theta
= \frac{\sin \theta}{9} + C.
\]

We must express this indefinite integral in terms of the original variable \(x \), but how?

The function \(\sec \) in \(x = 3 \sec \theta \) is invertible on \((0, \pi/2)\), and so

\[\theta = \sec^{-1}(x/3). \]
Thus the indefinite integral is
\[
\int \frac{1}{x^2\sqrt{x^2 - 9}} \, dx = \frac{\sin(\sec^{-1}(x/3))}{9} + C.
\]
The composition of sine with the inverse of secant is messy. Can it be simplified?
Yes, it can with the use of a right-angle triangle: one angle is \(\theta\) which lies between 0 and \(\pi/2\), and since \(\sec \theta = x/3\), the side of the triangle adjacent to the angle \(\theta\) has length 3 and the hypothenuse has length \(x\).
The Pythagorean Theorem then gives the length of the side opposite \(\theta\) as \(\sqrt{x^2 - 9}\), and so
\[
\sin(\sec^{-1}(x/3)) = \sin \theta = \frac{\sqrt{x^2 - 9}}{x}.
\]
The indefinite integral is then
\[
\int \frac{1}{x^2\sqrt{x^2 - 9}} \, dx = \frac{\sqrt{x^2 - 9}}{9x} + C.
\]
We can (and should) verify this (especially after all the work we did to get it):
\[
\frac{d}{dx} \frac{\sqrt{x^2 - 9}}{9x} = \frac{(1/2)(x^2 - 9)^{-1/2}(2x)(9x) - 9\sqrt{x^2 - 9}}{81x^2}
= \frac{x^2(x^2 - 9)^{-1/2} - \sqrt{x^2 - 9}}{9x^2} \cdot \frac{\sqrt{x^2 - 9}}{x^2 - 9}
= \frac{x^2 - (x^2 - 9)}{9x^2\sqrt{x^2 - 9}}
= \frac{1}{x^2\sqrt{x^2 - 9}}.
\]

Example. Evaluate \(\int x^3\sqrt{9 - x^2} \, dx\).

The trigonometric identity \(\sin^2 \theta + \cos^2 \theta = 1\) suggests the inverse substitution of
\[
x = 3 \sin \theta, \quad dx = 3 \cos \theta \, d\theta.
\]
For \(\theta\) in \((0, \pi/2)\), the indefinite integral becomes
\[
\int x^3\sqrt{9 - x^2} \, dx = \int 27 \sin^3 \theta \sqrt{9 - 9 \sin^2 \theta} (3 \cos \theta) \, d\theta
= 243 \int \sin^3 \theta \cos^2 \theta \, d\theta.
\]
With the power of sine being odd, we use the substitution \(u = \cos \theta, \, du = -\sin \theta d\theta\) to convert the integrand into a polynomial:
\[\int x^3 \sqrt{9 - x^2} \, dx = 243 \int (1 - \cos^2 \theta) \cos \theta \sin \theta \, d\theta\]
\[= -243 \int (1 - u^2)u^2 \, du\]
\[= -243 \int (u^2 - u^4) \, du\]
\[= -243 \left[\frac{u^3}{3} - \frac{u^5}{5} \right] + C.\]

Since \(x = 3 \sin \theta \) and \(\theta \) is in \((0, \pi/2)\) where \(\sin \) is invertible, we get \(\theta = \sin^{-1}(x/3). \)

Since \(u = \cos \theta \), we get
\[\int x^3 \sqrt{9 - x^2} \, dx = -243 \left[\frac{\cos^3(\sin^{-1}(x/3))}{3} - \frac{\cos^5(\sin^{-1}(x/3))}{5} \right] + C.\]

Again, by a right-angled triangle with \(\theta \) as one angle, \(x \) as the side opposite \(\theta \), and 3 as the hypotenuse, we get that
\[\cos(\sin^{-1}(x/3)) = \frac{\sqrt{9 - x^2}}{3}.\]

Thus the indefinite integral is
\[\int x^3 \sqrt{9 - x^2} \, dx = -243 \left[\frac{(9 - x^2)^{3/2}}{81} - \frac{(9 - x^2)^{5/2}}{243 \times 5} \right] + C\]
\[= -3(9 - x^2)^{3/2} + \frac{(9 - x^2)^{5/2}}{5} + C.\]

We may think that this does not “look” right, but we can tell for sure by verification:
\[\frac{d}{dx} \left[-3(9 - x^2)^{3/2} + \frac{(9 - x^2)^{5/2}}{5} + C \right] = -\frac{9}{2} \sqrt{9 - x^2}(-2x) + \frac{1}{2}(9 - x^2)^{3/2}(-2x)\]
\[= 9x \sqrt{9 - x^2} - x(9 - x^2)^{3/2}\]
\[= x \sqrt{9 - x^2}(9 - (9 - x^2))\]
\[= x^3 \sqrt{9 - x^2}.\]

Evaluation of Definite Integrals by Inverse Substitutions. When we deal with definite integrals, we do not have to undo all the changes we made along the way.

Example 3. Evaluate \(\int_{0}^{1} \sqrt{x^2 + 1} \, dx. \)

The trigonometric identity \(1 + \tan^2 \theta = \sec^2 \theta \) suggest the inverse substitution
\[x = \tan \theta, \quad dx = \sec^2 \, d\theta.\]
Here the limits of integration become 0 = \tan u or \ u = 0, and 1 = \tan u or \ u = \pi/4, so that the definite integral becomes
\[
\int_0^1 \sqrt{x^2 + 1} \, dx = \int_0^{\pi/4} \sqrt{\tan^2 \theta + 1} \ \sec^2 \theta \, d\theta
\]
\[
= \int_0^{\pi/4} \sec^3 \theta \, d\theta.
\]

With the power of secant being odd, there is no trigonometric identity that will help us here.

Instead we opt for an integration by parts approach: with

\[u = \sec \theta, \ \ dv = \sec^2 \theta \, d\theta, \ \ du = \sec \theta \tan \theta \, d\theta, \ \ v = \tan \theta,\]

the definite integral becomes
\[
\int_0^{\pi/4} \sec^3 \theta \, d\theta = \sec \theta \tan \theta \bigg|_0^{\pi/4} - \int_0^{\pi/4} \sec \theta \tan^2 \theta \, d\theta
\]
\[
= \frac{2}{\sqrt{2}} - \int_0^{\pi/4} \sec \theta (\sec^2 \theta - 1) \, d\theta
\]
\[
= \frac{2}{\sqrt{2}} - \int_0^{\pi/4} \sec^3 \theta \, d\theta + \int_0^{\pi/4} \sec \theta \, d\theta.
\]

Combining the two integrals involving the cube of secant gives
\[
\int_0^{\pi/4} \sec^3 \theta \, d\theta = \frac{1}{\sqrt{2}} + \frac{1}{2} \int_0^{\pi/4} \sec \theta \, d\theta
\]
\[
= \frac{1}{\sqrt{2}} + \frac{1}{2} \left[\ln |\sec \theta + \tan \theta| \right]_0^{\pi/4}
\]
\[
= \frac{1}{\sqrt{2}} + \frac{1}{2} \left[\ln \left| \frac{2}{\sqrt{2}} + 1 \right| - \ln |1 + 0| \right]
\]
\[
= \frac{1}{\sqrt{2}} + \frac{1}{2} \ln(1 + \sqrt{2}).
\]

Along the way, we learned that
\[
\int \sec^3 \theta \, d\theta = \frac{\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta|}{2} + C,
\]

from using integration by parts and
\[
\int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C.
\]