Name:______________________________
Student ID(see bubble sheet):______________
Section:______________________________
Instructor:

Math 313 (Linear Algebra)
Exam 3 Practice
Mar 26,27,28

Instructions:

• For questions which require a written answer, show all your work. Full credit will be given only if the necessary work is shown justifying your answer.
• Simplify your answers.
• Scientific calculators are allowed.
• Should you have need for more space than is allocated to answer a question, use the back of the page the problem is on and indicate this fact.
• Please do not talk about the test with other students until after the last day to take the exam.
Part I: Multiple Choice Questions: Mark all answers which are correct for each question. (4 points each.)

1. On \(\mathbb{P}_2\) the linear transformation \(T(p)(x) := x^2 p''(x)\) is given. Which of the following statements are true?

 a) \(T\) is invertible.
 b) \(T\) has a kernel of dimension 2.
 c) \(T\) is onto.
 d) The matrix of \(T\) w.r.t. the basis \(B := \{1, t, t^2\}\) assumes the form
 \[
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 1 & 0 & 0 \\
 \end{pmatrix}
 \]

 e) The matrix of \(T\) w.r.t. the basis \(B := \{1, t, t^2\}\) assumes the form
 \[
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 1 \\
 \end{pmatrix}
 \]
 f) The matrix of \(T\) w.r.t. the basis \(B := \{1, t, t^2\}\) cannot be a square matrix.

2. Let \(W = \operatorname{Span}\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}\). Which of the following sets of vectors span the subspace \(W^\perp\)?

 Select all that apply:

 a) \(\left\{ \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \right\}\)
 b) \(\left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}\)
 c) \(\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}\)
 d) \(\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}\)
 e) \(\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}\)
 f) \(\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix} \right\}\)

3. Let \(A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}\). Then, the matrix \(P\) that diagonalizes \(A\) is given by

 a) \(\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}\)
 b) \(\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}\)
 c) \(\begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}\)
 d) \(\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\)
 e) \(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\)
 f) \(\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}\)
Part II: Fill in the blank with the best possible answer. (4 points each.)

4. (10 points)

(a) A matrix A is called symmetric if $A^T = A$. Let M denote the vector space of all symmetric 2×2 matrices. Then $\dim M = \underline{}$.

(b) Fill in the matrix so that it has rank 1.

\[
\begin{bmatrix}
1 & 2 \\
2 & -4 \\
& -6 \\
\end{bmatrix}
\]

(c) Let $\{u_1, \ldots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n. For each y in W, the weights of the linear combination $y = c_1u_1 + \cdots + c_pu_p$ are given by

\[c_j = \underline{} \quad \text{for } j = 1, \ldots, p.\]

(d) Let $y = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$, and $W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$. The distance from y to W is $\underline{}$.

(e) If A is an $n \times n$ matrix, \mathbf{x} is a nonzero vector, and $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ, then $\underline{}$.

(f) Assume A is an $n \times n$ matrix that has distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_r$ with corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$. What can be said of the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r\}$? $\underline{}$.
Part III: Justify your answer and show all work for full credit.

5. For a real 2x2 matrix A prove or disprove by giving a counterexample that with every complex eigenvector $u + iv$ also its conjugate, $u - iv$, is an eigenvector of A.

6. Let $T : V \to W$ be a linear transformation that is one-to-one. Prove that $\dim V \leq \dim W$.

 Hint: take a basis $\{b_1, \ldots, b_n\}$ of V, and consider the set $\{T(b_1), \ldots, T(b_n)\}$ in W.

7. Can

 $$F = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

 be diagonalized? If it can, find the diagonalizing matrix. Otherwise, show why it cannot.

8. Prove that for any $m \times n$ matrix A, we have $\dim(\text{Nul} A)^\perp = \dim(\text{Nul} A^T)^\perp$.

9. Let $W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ -5 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\}$. Find a basis for W^\perp.

10. Let A be a 15×20 matrix. For a particular vector b, the system $Ax = b$ has 6 free variables. Can we guarantee that $Ax = b$ always has a solution for any vector b? Justify your conclusion.

11. Prove that if A and B are similar matrices, then A and B have the same eigenvalues.

12. Let $W = \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$. Use an orthogonal basis for W and the projection formula to find the closest point in W to $y = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$. Does your answer makes sense? Explain.

13. For the matrix A given by

 $$A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$$

 (a) Find its eigenvalues and eigenvectors

 (b) Check that the eigenvalues and eigenvectors of A found in part (a) are correct by verifying that $Av = \lambda v$ for every eigenvalue λ and its corresponding eigenvector v.

END OF EXAM