A Motivational Example. Recall that the eigenvalues and eigenvectors of
\[A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \text{ are } \lambda_1 = 3, \quad \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \lambda_2 = -1, \quad \vec{v}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}. \]

Let \(P \) be the matrix whose columns are the eigenvectors of \(A \):
\[P = [\vec{v}_1 \ \vec{v}_2] = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}. \]

The matrix \(P \) is invertible since its columns are linearly independent; its inverse is
\[P^{-1} = \frac{1}{-4} \begin{bmatrix} -2 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{bmatrix}. \]

The matrix \(P^{-1}AP \) is similar to the matrix \(A \).

What is \(P^{-1}AP \)? Well,
\[
P^{-1}AP = \begin{bmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3/2 & 3/4 \\ -1/2 & 1/4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3/2 + 3/2 & 3/2 - 3/2 \\ -1/2 + 1/2 & -1/2 - 1/2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}.
\]

Recognize the entries on the diagonal of this matrix? They are the eigenvalues of \(A \) in the order in which their eigenvectors were placed in \(P \)!

Definitions. An \(n \times n \) matrix \(A \) is **diagonalizable** if it is similar to a diagonal matrix.

We call an invertible matrix \(P \) for which \(P^{-1}AP \) is diagonal, a **diagonalizing matrix** for \(A \).

Is every square matrix diagonalizable?

Theorem 5. An \(n \times n \) matrix \(A \) is diagonalizable if and only if \(A \) has \(n \) linearly independent eigenvectors.

Proof. For any invertible matrix \(P \) with columns \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) and any diagonal matrix \(D \) with diagonal entries \(\lambda_1, \lambda_2, \ldots, \lambda_n \), we have
\[
AP = A [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n] = [A\vec{v}_1 \ A\vec{v}_2 \ \cdots \ A\vec{v}_n],
\]
\[
PD = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = [\lambda_1\vec{v}_1 \ \lambda_2\vec{v}_2 \ \cdots \ \lambda_n\vec{v}_n].
\]
Suppose that A has n linearly independent eigenvectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$.

Let λ_i be the eigenvalue of A corresponding to \vec{v}_i, i.e., $A\vec{v}_i = \lambda_i \vec{v}_i$.

Then $AP = PD$.

Why is P invertible? Because its columns form a linearly independent set, so by the Inverse Matrix Theorem, P is invertible.

Thus we have $D = P^{-1}AP$, and so A is diagonalizable with diagonalizing matrix P.

Now suppose that A is diagonalizable.

Then there is an invertible matrix P with columns $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and a diagonal matrix D with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $D = P^{-1}AP$.

So $PD = AP$, which means $A\vec{v}_i = \lambda_i \vec{v}_i$ for each $i = 1, 2, \ldots, n$, that is, each \vec{v}_i is an eigenvector of A.

Since P is invertible, the columns of P form an independent set of vectors, and therefore A has n linearly independent eigenvectors. \hfill \Box

Theorem 6. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Proof. Any set of n eigenvectors corresponding to the n distinct eigenvalues are linearly independent, and so A is diagonalizable by Theorem 5. \hfill \Box

Example. Is $A = \begin{bmatrix} -1 & -3 & -4 \\ 1 & 3 & 2 \\ 1 & 1 & 3 \end{bmatrix}$ diagonalizable?

The characteristic polynomial of A is

$p(\lambda) = -\lambda^3 + 5\lambda^2 - 8\lambda + 4 = -(\lambda - 1)(\lambda - 2)^2$.

So the eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 2$, and $\lambda_3 = 2$.

Row reduction of $A - I$ gives the eigenspace of A belonging the eigenvalue 1 of algebraic multiplicity 1:

$A - I = \begin{bmatrix} -2 & -3 & -4 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{Nul}(A - I) = \text{Span} \left(\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \right)$.

The geometric multiplicity of the eigenvalue 1 is 1, the dimension of Nul($A - I$).

An eigenvector of A belonging to $\lambda_1 = 1$ is $\vec{v}_1 = [-2 \ 0 \ 1]^T$.

Row reduction of $A - 2I$ gives the eigenspace of A belonging to eigenvalue 2 of algebraic multiplicity 2:

$A - 2I = \begin{bmatrix} -3 & -3 & -4 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{Nul}(A - 2I) = \text{Span} \left(\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right)$.

The geometric multiplicity of the eigenvalue 2 is not 2 but is 1, the dimension of Nul($A - 2I$).
An eigenvector of A belonging to the eigenvalue 2 is $\vec{v}_2 = [-1 1 0]^T$.

The two eigenvectors \vec{v}_1, \vec{v}_2 are linearly independent.

Is there a third eigenvector \vec{v}_3 for which the set of $\vec{v}_1, \vec{v}_2, \vec{v}_3$ is linearly independent?

If there were, then $A\vec{v}_3 = \lambda \vec{v}_3$ for an eigenvalue λ of A, which would mean that $\vec{v}_3 \in \text{Nul}(A - I)$ or $\vec{v}_3 \in \text{Nul}(A - 2I)$, hence \vec{v}_3 would be a nonzero scalar multiple of \vec{v}_1 or \vec{v}_2.

But then $\vec{v}_1, \vec{v}_2, \vec{v}_3$ would form a linearly dependent set.

So, A has only 2 linearly independent eigenvectors, and is not diagonalizable.

Could an $n \times n$ matrix be diagonalizable when it does not have n distinct eigenvalues?

Theorem 7. Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_p$.

a. For each $k = 1, \ldots, p$, the geometric multiplicity of λ_k is less than or equal to its algebraic multiplicity.

b. The $n \times n$ matrix A is diagonalizable if and only if the sum of the geometric multiplicities of its eigenvalues equals n which happens if and only if the geometric multiplicity of each eigenvalue is equal to its algebraic multiplicity.

c. If A is diagonalizable and B_k is a basis of the eigenspace $\text{Nul}(A - \lambda_k I)$ for each k, then the union of the B_k is an eigenvector basis for \mathbb{R}^n.

Example. Is $A = \begin{bmatrix} 2 & -2 & 2 \\ 0 & 0 & 2 \\ 0 & -1 & 3 \end{bmatrix}$ diagonalizable?

The characteristic polynomial of A is $\det(A - \lambda I) = -(\lambda - 1)(\lambda - 2)^2$.

The eigenvalue $\lambda = 1$ has algebraic multiplicity 1.

Its geometric multiplicity of 1. Why? Because there is a linearly independent solution of $(A - I)x = 0$, but no more than one.

The eigenvalue $\lambda = 2$ has algebraic multiplicity 2.

What is its geometric multiplicity?

We row reduce $A - 2I$ to find out:

$$A - 2I = \begin{bmatrix} 0 & -2 & 2 \\ 0 & -2 & 2 \\ 0 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. $$

There are two free variables, and so $\dim \text{Nul}(A - 2I) = 2$, meaning the geometric multiplicity of $\lambda = 2$ is 2.

Thus the matrix A is diagonalizable.