We completely determine which matrices in $M_n(\mathbb{F})$ have an orthonormal eigenbasis.

4.4.1 Schur’s Lemma and the Spectral Theorem

Recall that a matrix $Q \in M_n(\mathbb{F})$ is orthonormal when $Q^H Q = I = QQ^H$.

Definition 4.4.1. Two matrices $A, B \in M_n(\mathbb{F})$ are orthonormally similar if there is an orthonormal matrix $U \in M_n(\mathbb{F})$ such that $B = U^H A U$.

Note. For an orthonormal matrix U we have $U^{-1} = U^H$, and so

$$B = U^H A U = U^{-1} A U,$$

i.e., A and B are similar. The point here is that the inverse of an orthonormal matrix is easy to compute and we emphasize that in Definition 4.4.1.

Recall that a matrix $A \in M_n(\mathbb{F})$ is self-adjoint, or Hermitian, if $A^H = A$.

Lemma 4.4.2. If A is Hermitian and orthonormally similar to B, then B is Hermitian.

The proof of this is HW (Exercise 4.20).

Recall that the only matrices that are diagonalizable are the semisimple ones, i.e., the ones with an eigenbasis.

Theorem 4.4.3 (Schur’s Lemma). Every $A \in M_n(\mathbb{C})$ is orthonormally similar to an upper triangular matrix.

Proof. We prove Schur’s Lemma by induction.

The base case of $n = 1$ is trivial.

So suppose that the theorem holds for $n = k$, and take $A \in M_{k+1}(\mathbb{C})$.

Let λ_1 be an eigenvalue of A and choose a unit eigenvector w_1.

Using the Gram-Schmidt algorithm, construct orthonormal vectors $\{w_2, \ldots, w_{k+1}\}$ so that $[w_1, w_2, \ldots, w_{k+1}]$ is an orthonormal basis for \mathbb{C}^{k+1}.

Let $U \in M_{k+1}(\mathbb{C})$ be the matrix whose i^{th} column is w_i.

Then U is an orthonormal matrix for which the product of the first row of U^H with the first column of AU, i.e., Aw_1, is

$$w_1^H A w_1 = w_1^H (\lambda_1 w_1) = \lambda_1 w_1^H w_1 = \lambda_1.$$

The product the i^{th} row of U^H for $i = 2, \ldots, k + 1$ with Aw_1 is

$$w_i^H A w_1 = w_i^H (\lambda_1 w_1) = \lambda_1 w_i^H w_1 = 0$$

because the vectors $w_1, w_2, \ldots, w_{k+1}$ are orthonormal.

Thus the matrix $U^H A U$ has the block form

$$\begin{bmatrix} \lambda_1 & * \\ 0 & M \end{bmatrix}$$
where \(*\) is \(k\) row vector, \(0\) is a \(k\) column vector, and \(M \in M_k(\mathbb{C})\).

By the inductive hypothesis, there is an orthonormal matrix \(Q \in M_k(\mathbb{C})\) such that \(T_1 = Q_1^HMQ_1\) is an upper triangular matrix.

The matrix \(Q\) whose blocks are
\[
\begin{bmatrix}
1 & 0 \\
0 & Q_1
\end{bmatrix}
\]
is an orthonormal matrix for which
\[
(UQ)^H A(UQ) = Q^H(U^H A)Q = Q^H \begin{bmatrix}
\lambda_1 & * \\
0 & M
\end{bmatrix} Q = \begin{bmatrix}
\lambda_1 & * \\
0 & Q_1^HMQ_1
\end{bmatrix} = \begin{bmatrix}
\lambda_1 & * \\
0 & T_1
\end{bmatrix}.
\]

This is an upper triangular matrix and \(UQ\) is an orthonormal matrix.

Thus \(A\) is orthonormally similar to an upper triangular matrix. \(\square\)

Remark 4.4.4. An upper triangular matrix \(B\) that is orthonormally similar to a given matrix \(A\) is called a Schur form of \(A\). The similar matrices \(B\) and \(A\) have the same eigenvalues, and those eigenvalues have the same algebraic multiplicities and the same geometric multiplicities.

Theorem 4.4.5. Let \(\lambda\) be an eigenvalue of \(T \in \mathcal{L}(V)\) for a vector space \(V\) of dimension \(n\). If \(m_\lambda\) is the algebraic multiplicity of \(\lambda\), then
\[
\dim(\Sigma_\lambda(T)) \leq m_\lambda.
\]

Proof. Let \(v_1, \ldots, v_k\) be a basis for \(\Sigma_\lambda(T)\).

By the Extension Theorem, there are vectors \(v_{k+1}, \ldots, v_n\) so that \(S = [v_1, \ldots, v_n]\) is a basis for \(V\).

Since \(T(v_i) = \lambda v_i\) for all \(i = 1, \ldots, k\), the matrix representation of \(T\) in the basis \(S\) has the block form
\[
\begin{bmatrix}
\lambda I_k & * \\
0 & A_{22}
\end{bmatrix}
\]
where \(I_k\) is the \(k \times k\) identity matrix.

This block form implies that the characteristic polynomial \(p(z)\) of \(T\) factors as
\[
(z - \lambda)^k \det(zI_{n-k} - A_{22}).
\]

Since \((z - \lambda)^{m_\lambda}\) is a maximal factor of \(p(z)\), i.e., the power \(m_\lambda\) is the biggest possible, it follows that \(k \leq m_\lambda\). \(\square\)

Corollary 4.4.6. A matrix \(A \in M_n(\mathbb{C})\) is semisimple if and only if \(m_\lambda = \dim(\Sigma_\lambda(A))\) for every eigenvalue \(\lambda\) of \(A\).

Spectral Theorem for Hermitian Matrices

Theorem 4.4.7 (First Spectral Theorem). Every Hermitian matrix \(A \in M_n(\mathbb{C})\) is orthonormally diagonalizable, i.e., orthonormally similar to a diagonal matrix, and the diagonal matrix is real.
Proof. By Schur’s Lemma, A is orthonormally similar to an upper triangular matrix T. Since A is Hermitian and orthonormally similar to T, the matrix T is also Hermitian by Lemma 4.4.2.

An upper triangular matrix that is Hermitian is diagonal, and because $T^H = T$, its diagonal entries are all real. □

Remark 4.4.8. The converse of Theorem 4.4.7 is also true: if A is orthonormally similar to a real diagonal matrix, i.e., $A = U^H D U$ for U orthonormal and D a real diagonal matrix, then A is Hermitian, i.e.,

$$A^H = (U^H D U)^H = U^H D^H U = U^H D U = A.$$

Corollary 4.4.9. If A is Hermitian, then it has an orthonormal eigenbasis and the eigenvalues of A are real.

Proof. Let A be Hermitian.

By the First Spectral Theorem, there is an orthonormal matrix U such that $U^H A U$ is a real diagonal matrix D.

Since A and D are similar, they have the same eigenvalues, so the eigenvalues of A are real.

The columns of U form an orthonormal eigenbasis for A. □

Remark 4.4.11. Not every eigenbasis of a Hermitian matrix is orthonormal. The eigenvectors need not be of unit length. More problematic is that for a eigenspace of dimension 2 or more, the eigenvectors found in this eigenspace need not be orthogonal.

Normal Matrices

Hermitian matrices are not the only matrices that are orthonormally diagonalizable.

Definition 4.4.12. A matrix $A \in M_n(\mathbb{C})$ is normal if $A^H A = A A^H$.

A skew-Hermitian matrix B is normal because $B^H = -B$ implies

$$B^H B = -B^2 = BB^H.$$

An orthonormal matrix U is normal because $U^H U = I = U U^H$ is $U^H U = U U^H$.

Theorem 4.4.14 (Second Spectral Theorem). A matrix $A \in M_n(\mathbb{C})$ is normal if and only if it is orthonormally diagonalizable.

Proof. Suppose A is normal.

By Schur’s Lemma there is an orthonormal matrix U and an upper triangular matrix T such that $T = U^H A U$. Hence $T^H = U^H A^H U$ and

$$T^H T = U^H A^H U U^H A U = U^H A^H A U = U^H A A^H U$$

$$= U^H A U U^H A^H U = T T^H,$$

which shows that T is normal.
For $T = [t_{ij}]$ where $t_{ij} = 0$ when $i > j$ (i.e., T is upper triangular) we have

$$T^HT = \begin{bmatrix} t_{11} & 0 & \cdots & 0 \\ t_{12} & t_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ t_{1n} & t_{2n} & \cdots & t_{nn} \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ 0 & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{nn} \end{bmatrix},$$

and

$$TT^H = \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ 0 & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{nn} \end{bmatrix} \begin{bmatrix} t_{11} & 0 & \cdots & 0 \\ t_{12} & t_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ t_{1n} & t_{2n} & \cdots & t_{nn} \end{bmatrix}.$$

Since T is normal, the diagonal entries of T^HT and TT^H are the same:

$$|t_{11}|^2 = |t_{11}|^2 + |t_{12}|^2 + \cdots + |t_{1n}|^2$$

$$|t_{12}|^2 + |t_{22}|^2 = |t_{22}|^2 + \cdots + |t_{2n}|^2$$

$$\vdots$$

$$|t_{1n}|^2 + |t_{2n}|^2 + \cdots + |t_{nn}|^2 = |t_{nn}|^2.$$

These imply that $t_{ij} = 0$ whenever $i \neq j$, and so T is diagonal.

Now suppose that A is orthonormally diagonalizable: there is an orthonormal matrix U and a diagonal matrix D such that $D = U^HAU$.

Then $A = UD^HU^H$ and $A^H = UD^HUU^H$.

Because D is diagonal we have $D^HD = DD^H$ (i.e., D is normal).

Hence

$$A^HA = UD^HU^HU^DU = UDD^HUU^H = U^HD^HU^HU^H = UD^HUU^HUDU^H = AA^H.$$

Thus A is normal. \qed