Math 371 Lecture #34
§7.8 (Ed.2), 8.4 (Ed.2): Quotient Groups and Homomorphisms, Part II

We develop some of the basic theory of homomorphisms, culminating in the First and Third Isomorphism Theorems. (Yes, there is a Second Isomorphism Theorem which you have as a homework problem.)

Lemma 8.19. Let \(f : G \to H \) be a homomorphism of groups with kernel \(K \). For \(a, b \in G \) we have \(f(a) = f(b) \) if and only if \(Ka = Kb \).

Proof. Suppose that \(f(a) = f(b) \). Then \(f(ab^{-1}) = f(a)f(b^{-1}) = f(a)[f(b)]^{-1} = e_H \), so that \(ab^{-1} \in K \), so that \(Ka = Kb \).

Now suppose that \(Ka = Kb \).
Then \(ab^{-1} \in K \) and so \(f(ab^{-1}) = e_H \).

Hence
\[
f(a)[f(b)]^{-1} = f(a)f(b^{-1}) = f(ab^{-1}) = e_H.
\]

This implies that \(f(a) = f(b) \).

First Isomorphism Theorem. If \(f : G \to H \) is a surjective homomorphism of groups with kernel \(K \), then \(G/K \) is isomorphic to \(H \).

Proof. We define a map \(\varphi : G/K \to H \) by \(\varphi(Ka) = f(a) \).

First we show that this map is well-defined.

For \(Ka = Kb \), we know that \(f(a) = f(b) \) by Lemma 8.19 (Ed.3), so that \(\varphi(Ka) = \varphi(Kb) \), meaning that \(\varphi \) is well-defined.

Second we show that \(\varphi \) is surjective.

For any \(h \in H \), there exists \(a \in G \) such that \(f(a) = h \) by the surjectivity of \(f \).

Then \(\varphi(Ka) = f(a) = h \), so that \(\varphi \) is surjective.

Third we show that \(\varphi \) is injective.

Suppose that \(\varphi(Ka) = \varphi(Kb) \).

Then \(f(a) = f(b) \) which implies by Lemma 8.19 (Ed.3) that \(Ka = Kb \), so that \(\varphi \) is injective.

Last we show that \(\varphi \) is a homomorphism.

For \(Ka, Kb \in G/K \) we have
\[
\varphi((Ka)(Kb)) = \varphi(K(ab)) = f(ab) = f(a)f(b) = \varphi(Ka)\varphi(Kb).
\]

Therefore, \(\varphi \) is an isomorphism.

Example. What is \(\mathbb{Z} \times \mathbb{Z}/\langle (2, 2) \rangle \) isomorphic to? Is it \(\mathbb{Z} \)? or \(\mathbb{Z}_2 \)? or something else?
The element \(\mathbb{Z} \times \mathbb{Z} + (1, 0) \) has infinite order while the element \(\mathbb{Z} \times \mathbb{Z} + (1, 1) \) has order 2. We consider the map \(f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}_2 \) defined by

\[
f(a, b) = (a - b, [b]_2).
\]

We show that \(f \) is surjective.

For \((c, [d]_2) \in \mathbb{Z} \times \mathbb{Z}_2\), the choice of \(a = c\) and \(b = 0\) if \(d\) is even, or \(a = c + 1\) and \(b = 1\) if \(d\) is odd, satisfies \(f(a, b) = (c, [d]_2)\).

We show that \(f \) is a homomorphism.

For \((a, b)\) and \((c, d)\) in \(\mathbb{Z} \times \mathbb{Z}\) we have

\[
f((a, b) + (c, d)) = f(a + c, b + d) = (a + c, [b + d]_2) = (a, [b]_2) + (c, [d]_2) = f(a, b) + f(c, d).
\]

We show that the kernel of \(f \) is \(\langle (2, 2) \rangle\).

For \((a, b) \in \mathbb{Z} \times \mathbb{Z}\), the equation \(f(a, b) = (0, 0)\) implies that \(a - b = 0\) and \([b]_2 = 0\). Thus \(a = b\) and \(b\) is even, say \(b = 2k\) for some \(k \in \mathbb{Z}\), so that \((a, b) = (2k, 2k)\).

Since every element of \(\langle (2, 2) \rangle\) has the form \((2k, 2k)\) for some \(k \in \mathbb{Z}\), we have that the kernel of \(f \) is \(\langle (2, 2) \rangle\).

By the First Isomorphism Theorem, we have \(\mathbb{Z} \times \mathbb{Z} / \langle (2, 2) \rangle \cong \mathbb{Z} \times \mathbb{Z}_2\).

Now we consider subgroups of a quotient group \(G/N\) and how these subgroups are related to \(G\) and \(N\).

Theorem 8.21. If \(N\) is a normal subgroup of a group \(G\) and \(K\) is any subgroup of \(G\) that contains \(N\) (i.e., \(N \subseteq K \subseteq G\)), then \(K/N\) is a subgroup of \(G/N\).

Proof. With \(N\) a subgroup of \(K\) and \(K\) a subgroup of \(G\), the normality of \(N\) in \(K\) follows because \(Na = aN\) for all \(a \in G\) implies \(Na = aN\) for all \(a \in K\).

Then \(K/N\) is a group whose elements are the cosets \(Na\) for \(a \in K\).

Since \(K\) is a subgroup of \(G\), each element of \(K/N\) is a element of \(G/N\).

Third Isomorphism Theorem. If \(K\) and \(N\) are normal subgroups of a group \(G\) with \(N \subseteq K \subseteq G\), then \(K/N\) is a normal subgroup of \(G/N\) and \((G/N)/(K/N) \cong G/K\).

Proof. If we can construct a surjective homomorphism from \(G/N\) to \(G/K\) with kernel \(K/N\), then the First Isomorphism Theorem will imply that \((G/N)/(K/N) \cong G/K\).

Define a map \(f : G/N \to G/K\) by \(f(Na) = Ka\).

The map \(f\) is well-defined, because for \(Na = Nb\) we know that \(ab^{-1} \in N\), and since \(N \subseteq K\), then \(ab^{-1} \in K\), so that \(Ka = Kb\).

The surjectivity of \(f\) follows because any \(Ka\) in \(G/K\) is the image of \(Na \in G/N\).

The map \(f\) is a homomorphism because for \(Na, Nb \in G/N\) we have

\[
f((Na)(Nb)) = f(N(ab)) = K(ab) = (Ka)(Kb) = f(Na)f(Nb).
\]
To identify the kernel of f we suppose that $f(\text{Na}) = \text{Ke}$, which says that $Ka = Ke$.

However $Ka = Ke$ if and only if $a = ae^{-1} \in K$, and so the kernel of f is precisely those cosets Na with $a \in K$, namely K/N.

By the First Isomorphism Theorem we obtain $(G/N)/(K/N) \cong G/K$. \hfill \Box

Example. A normal subgroup of $U_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}$ is $N = \{1, 4\}$.

A normal subgroup of U_{15} that contains N is $K = \{1, 2, 4, 8\}$.

A normal subgroup of $U_{15}/N = \{N, N2, N7, N11\}$ is $K/N = \{N, N2\}$.

By the Third Isomorphism Theorem, $(U_{15}/N)/(K/N) \cong U_{15}/K = \{K, K11\}$.

Corollary 8.23. Let N be a normal subgroup of a group G and let K be any subgroup of G that contains N. Then K is normal in G if and only if K/N is normal in G/N.

Proof. Suppose K is normal in G. Then by the Third Isomorphism Theorem, the subgroup K/N is normal in G/N.

Now suppose that K/N is a normal subgroup of G/N. We will show that for any $a \in G$ and any $k \in K$ we have $a^{-1}ka \in K$, implying that K is normal in G.

Since K/N is normal, we have

$$N(a^{-1}ka) = (Na^{-1})(Nk)(Na) = (Na)^{-1}(Nk)(Na) \in K/N.$$

This means that $N(a^{-1}ka) = Nt$ for some $t \in K$, and hence $a^{-1}ka = nt$ for some $n \in N$. Since $N \subseteq K$, we have $n \in K$ so that $nt \in K$, meaning that $a^{-1}ka \in K$. \hfill \Box

Theorem 8.24. Let N be a normal subgroup of a group G. If T is a subgroup of G/N, then there exists a subgroup H of G that contains N such that $T = H/N$.

Proof. We use the subgroup T of G/N to construct a subgroup H of G: set

$$H = \{a \in G : Na \in T\}.$$

This is a subgroup of H: for $a, b \in H$, we have $N(ab^{-1}) = Na[Nb^{-1}] \in T$ because T is subgroup.

We show next that $N \subseteq H$: for $a \in N$, we have $ae^{-1} = ae = a \in N$, so that $Na = Ne$, and since $Ne \in T$, we obtain $a \in H$.

Now we recognize that H/N consists of the cosets Na for $a \in H$, which implies that $H/N = T$. \hfill \Box

Definition. A group G is called simple if its only normal subgroups are $\{e\}$ and G, i.e., it has no proper normal subgroup.

Theorem 8.25. An abelian group G is simple if and only if it is isomorphic to \mathbb{Z}_p for some positive prime p.

Proof. If G is isomorphic to \mathbb{Z}_p then it simple because the only subgroups (normal or otherwise) of \mathbb{Z}_p are $\{e\}$ and \mathbb{Z}_p.

Now suppose that G is simple.
Since G is abelian, every subgroup of G is normal, and with G simple, there are no proper subgroup of G.
Hence for a non-identity element $a \in G$, the cyclic subgroup $\langle a \rangle = G$.
Then G is isomorphic to \mathbb{Z} or \mathbb{Z}_n for some integer $n \geq 2$.
Since \mathbb{Z} has many proper subgroups like $\langle 2 \rangle$, we have that G is not isomorphic to \mathbb{Z}.
Thus G is isomorphic to \mathbb{Z}_n for some $n \geq 2$.
If n is not prime then \mathbb{Z}_n has proper normal subgroups, and so G must be isomorphic to \mathbb{Z}_p for some prime $p \geq 2$.
\hfill \square