Math 371 Lecture #38
§8.3 (Ed.2), 9.3 (Ed.3): The Sylow Theorems

The classification of finite nonabelian groups is vastly more complicated that that for finite abelian groups.

The first basic steps are the Sylow Theorems (pronounced SEE-low).

As with finite abelian groups, the close connection between the structure of a finite nonabelian group G and the arithmetic properties of $|G|$ plays a fundamental role.

In general, the converse of Lagrange’s Theorem is false, but there is a partial converse.

First Sylow Theorem. If G is finite group and p is a positive prime such that $p^k || G$ for some $k \in \mathbb{N}$, then G has a subgroup of order p^k.

Example. The order of the A_7 is $(1/2)7! = 2520 = 2^3 \cdot 3^2 \cdot 5 \cdot 7$.

By the First Sylow Theorem, the nonabelian group A_7 has subgroups of order 2, 4, 8, subgroups of order 3, 9, a subgroup of order 5, and a subgroup of order 7.

Corollary 9.14 (Cauchy’s Theorem). If G is a finite group whose order is divisible by a positive prime p, then G contains an element of order p.

Proof. Suppose that $p || |G|$.

Then by the First Sylow Theorem, there is a subgroup K of G with $|K| = p$.

Since p is prime, then K is cyclic, say $K = \langle a \rangle$ for some $a \in K$.

Then $|a| = p$. □

Example (Continued). In the nonabelian group A_7 there are elements of order 2, 3, 5, and 7 by Cauchy’s Theorem.

Definition. Let G be a finite group G and p a positive prime. If p^n is the largest power of p that divides $|G|$, then the subgroup of G with order p^n is called a Sylow p-subgroup.

That Sylow p-subgroups exist is a consequence of the First Sylow Theorem.

Example. The order of the nonabelian group S_5 is $120 = 2^3 \cdot 3 \cdot 5$.

Every subgroup of S_5 of order 8 is a Sylow 2-subgroup.

One such Sylow 2-subgroup of S_5 is

$$H = \{(1), (2345), (24)(35), (2543), (35), (23)(45), (24), (25)(34)\}.$$

How many Sylow 2-subgroups may S_5 have?

For each $x \in S_5$, the map $f_x : S_5 \to S_5$ given by $f_x(a) = x^{-1}ax$ is an inner automorphism of S_5.

Then, for each $x \in S_5$, the image $f_x(H)$ is also a Sylow 2-subgroup of S_5 because the inner automorphism f_x preserves the order.

Proposition. If K is a Sylow p-subgroup of a group G, then for each $x \in G$, then image $f_x(K) = x^{-1}Kx$ is also a Sylow p-subgroup of G.

This then leads to the question: if P and K are Sylow p-subgroups of G, how are P and K related?

Second Sylow Theorem. If P and K are Sylow p-subgroups of a group G, then there exist $x \in G$ such that $f_x(K) = P$, i.e., $P = x^{-1}Kx$.

The immediate consequence of the Second Sylow Theorem it that all Sylow p-subgroups are isomorphic.

Corollary 9.16. Let G be a finite group and K a Sylow p-subgroup of G. Then K is normal in G if and only if K is the only Sylow p-subgroup in G.

Proof. If K is the only Sylow p-subgroup of G, then $f_x(K) = K$, i.e., $x^{-1}Kx = K$, for all $x \in G$, and hence K is normal.

Now suppose K is normal.

For a Sylow p-subgroup P, there exists $x \in G$ such that $f_x(K) = P$.

Since K is normal, then $f_x(K) = K$, so that $P = K$. □

Example. The order of A_4 is $(1/2)4! = 12 = 2^2 \cdot 3$.

You showed in a Homework Problem (8.5 #7 Ed.3), that

$$N = \{(1), (12)(34), (13)(24), (14)(23)\}$$

is a normal subgroup of A_4.

The normal subgroup N has order 2^2 and so it is a Sylow 2-subgroup of A_4.

By Corollary 9.16, this normal subgroup N is the only Sylow 2-subgroup of A_4.

When a group has more than two Sylow p-subgroups, then none of the Sylow p-subgroups are normal.

How many Sylow p-subgroups can there be?

Third Sylow Theorem. The number of Sylow p-subgroups of a finite group G divides $|G|$ and is of the form $1 + pk$ for some $k = 0, 1, 2, \ldots$.

Example. A group G of order $20 = 2^2 \cdot 5$ has at least one Sylow 5-subgroup by the First Sylow Theorem.

The number of Sylow 5-subgroups of G divides 20 and is of the form $1 + 5t$ for $t \geq 0$ by the Third Sylow Theorem.

The divisors of 20 are 1, 2, 4, 5, 10, 20.

The numbers of the form $1 + pt$ are 1, 6, 11, 16, 21, \ldots.

The only number common to both of these lists is 1.

So a group of order 20 has exactly one Sylow 5-group, and because there is only one, it is a normal subgroup (by the Corollary of the Second Sylow Theorem).

Consequently, any group of order 20 is never simple, because it always has a normal subgroup (the Sylow 5-subgroup)!

The Third Sylow Theorem can also be used to classify certain groups.
Corollary 9.18. Let G be a group of order pq where p and q are primes such that $p > q$. If $q \nmid (p - 1)$, then $G \cong \mathbb{Z}_{pq}$.

Proof. By the First Sylow Theorem, there exists a Sylow p-subgroup of G.

By the Third Sylow Theorem, the number of Sylow p-subgroups of G must divide $|G| = pq$ and be of the form $1 + pt$ for $t \geq 0$.

The only divisors of pq are 1, p, q, and pq.

Since $q < p$ there is no $t \geq 0$ such that $q = 1 + pt$.

If $p = 1 + pt$ for some $t \geq 0$, then $p(1 - t) = 1$, which says that $p \mid 1$, a contradiction.

If $pq = 1 + pt$ for some $t \geq 0$, then $p(q - t) = 1$, which says that $p \mid 1$, another contradiction.

Thus there is only one integer that divides $|G| = pq$ and is of the form $1 + pt$ for some $t \geq 0$, and that integer is 1.

So there is only one Sylow p-subgroup H of G.

By the Corollary of the Second Sylow Theorem, this Sylow p-subgroup is normal.

Now considering q, there is by the First Sylow Theorem a Sylow q-subgroup in G.

The number of Sylow q-subgroups of G must divide $|G| = pq$ and be of the form $1 + qt$ for some $t \geq 0$.

The only divisor of pq are 1, p, q, and pq.

If $p = 1 + qt$ for some t, then $qt = p - 1$, which says that $q \mid (p - 1)$.

But this contradicts the hypothesis that $q \nmid (p - 1)$.

If $q = 1 + tq$ for some $t \geq 0$, then $q(t - 1) = 1$, which says that $q \mid 1$, a contradiction.

If $pq = 1 + tq$ for some $t \geq 0$, then $q(p - t) = 1$, which says that $q \mid 1$, another contradiction.

So there is only one Sylow q-subgroup K of G, which by the Corollary of the Second Sylow Theorem, is normal.

We now have two normal subgroups H and K of G.

The intersection $H \cap K$ is a subgroup of both H and K, and order of $H \cap K$ divides the orders of H and K by Lagrange’s Theorem.

With $|H| = p$ and $|K| = q$ being prime, we have that $|H \cap K| = 1$, so that $H \cap K = \{e\}$.

As we saw in the proof of Theorem 9.3 (Ed.3), every element of $HK = \{hk : h \in H, k \in K\}$ is uniquely written because $H \cap K = \{e\}$.

So the numbers of products in HK is precisely $|H| \cdot |K|$.

Since $|G| = pq = |H| \cdot |K|$, we have that $G = HK$.

So by Theorem 9.3, we have that $G \cong H \times K$.

Since p and q are prime, we know that $H \cong \mathbb{Z}_p$ and $K \cong \mathbb{Z}_q$.

Thus $G \cong \mathbb{Z}_p \times \mathbb{Z}_q$.

Since $(p, q) = 1$, therefore we have $G \cong \mathbb{Z}_{pq}$.

\square
Example. How many groups are there of order $95 = 19 \cdot 5$?

With $p = 19$, $q = 5$, we have $q \nmid (p - 1) = 18$.

By the Corollary to the Third Sylow Theorem, any group of order 95 is isomorphic to \mathbb{Z}_{95}.