The proofs of the Sylow Theorems depend on the equivalence relation on the elements of a group.

Definition. For a group G, two elements $a, b \in G$ are conjugate if there is $x \in G$ such that $b = x^{-1}ax$. You will recognize that the map $g \rightarrow x^{-1}gx$ for $g \in G$ is an inner automorphism of G.

Theorem 9.19. Conjugacy is an equivalence relation on G. We then speak of the conjugacy classes which are pairwise disjoint or identical, and whose union is G.

For a an element of a finite group G, how big is the conjugacy class that contains a? We find the answer in a special subgroup of G.

Definition. For an element a in a group G, the centralizer of a is $C(a) = \{ g \in G : ga = ag \}$.

Theorem 9.20. If G is a group and $a \in G$, then $C(a)$ is a subgroup of G.

Theorem 9.21. Let G be a finite group and $a \in G$. Then the number of elements in the conjugacy class of a is equal to the index $[G : C(a)]$ which divides $|G|$.

For a finite group G, if C_1, C_2, \ldots, C_t are the distinct conjugacy classes of elements of G, then

$$G = C_1 \cup C_2 \cup \cdots \cup C_t.$$

Since the distinct conjugacy classes are mutually disjoint, we have

$$|G| = |C_1| + |C_2| + \cdots + |C_t|.$$

If we choose one element a_i in each conjugacy class C_i, then by Theorem 9.21 we have $|C_i| = [G : C(a_i)]$, so that

$$|G| = [G : C(a_1)] + [G : C(a_2)] + \cdots + [G : C(a_t)].$$

This is known as the class equation of the finite group G, and is the basic tool used in the proofs of the Sylow Theorems.

There is another version of the class equation we will use shortly that depends on $Z(G)$, the center of G.

Theorem. For a finite group G, if C_1, C_2, \ldots, C_r are the conjugacy classes of G for which $|C_i| \geq 2$, then

$$|G| = |Z(G)| + |C_1| + |C_2| + \cdots + |C_r|.$$
Proof. For elements c and x of G, we have $cx = xc$ if and only if $x^{-1}cx = c$.
Now $c \in Z(G)$ if and only if $cx = xc$ for all $x \in G$.
Thus $c \in Z(G)$ if and only if c has exactly one conjugate, namely itself.
This implies that $Z(G)$ is the union of all of the one-element conjugacy classes of G. □

Theorem 9.27. If G is a group of order p^n for a positive prime p and some $n \geq 1$, then $|Z(G)| = p^k \geq 2$.
Proof. Since $Z(G)$ is a subgroup of G, we have $|Z(G)| = p^k$ for some $0 \leq k \leq n$ by Lagrange’s Theorem.

From the class equation for G, we know that
$$|Z(G)| = |G| - |C_1| - |C_2| - \cdots - |C_r|,$$
where $|C_i| \geq 2$ and $|C_i|$ divides $|G|$ by Theorem 9.21.
Since $|G| = p^n$, each $|C_i|$ is divisible by p.
Since $|G|$ is also divisible by p, the class equation implies that p divides $|Z(G)|$.
Therefore $|Z(G)| = p^k$ for some $1 \leq k \leq n$. □

Corollary 9.28. For a positive prime p and an integer $n > 1$, there are no simple groups of order p^n.
Proof. Suppose $|G| = p^n$ for a positive prime p and an integer $n > 1$.
The center $Z(G)$ is a normal subgroup of G.
If $Z(G) \neq G$, then G is not simple.
So suppose $Z(G) = G$, so that G is abelian.
If G were simple, then by Theorem 8.25 the group G would be isomorphic to Z_q for some positive prime q, and hence $|G| = q$.

But $|G| = p^n$ for a positive prime p and $n > 1$, a contradiction. □

Corollary 9.29. If G has order p^2 for a positive prime p, then G is abelian and G is isomorphic to Z_{p^2} or to $Z_P \oplus Z_P$.
Proof. With $|G| = p^2$ for a positive prime p, we have that $|Z(G)| = p$ or p^2 by Theorem 9.27.

If $|Z(G)| = p^2$, then $Z(G) = G$, and G is abelian.
If $|Z(G)| = p$, then as $Z(G)$ is normal, the quotient group $G/Z(G)$ has order $p^2/p = p$.
This means that $G/Z(G)$ is cyclic, so by Theorem 8.13, the group G is abelian.

With G being abelian, the Fundamental Theorem of Finite Abelian Groups implies that G is isomorphic to Z_{p^2} or $Z_{p} \oplus Z_{p}$.

Example. By Corollary 9.29, a group of order $9 = 3^2$ is abelian and isomorphic to Z_9, or $Z_3 \oplus Z_3$. □
We can extend the result of the Corollary from groups of order \(pq \) to some groups of order \(p^2 q \).

Theorem 9.30. Let \(p \) and \(q \) be distinct positive primes such that \(q \nmid 1 \pmod{p} \), i.e., \(q \neq 1 + pt \), and \(p^2 \nmid 1 + qt \), i.e., \(p^2 \neq 1 + qt \). If \(G \) is a group of order \(p^2 q \), then \(G \) is abelian and isomorphic to \(\mathbb{Z}_{p^2 q} \) or \(\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_q \).

Example. A group of order \(1573 = 11^2 \cdot 13 \) has \(p = 11 \) and \(q = 11 \) which satisfy \(13 \equiv 2 \pmod{11} \) and \(11^2 = 121 \equiv 4 \pmod{13} \).

So any group of order 1573 is abelian and isomorphic to \(\mathbb{Z}_{1573} \) or \(\mathbb{Z}_{11} \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{13} \).

The dihedral groups are a collection of finite nonabelian groups, and account for some of the nonabelian groups of finite order.

Theorem 9.32. The dihedral group \(D_n \) is a group of order \(2n \) generated by a rotation \(r \) and a reflection \(d \) where \(|r| = n \), \(|d| = 2 \), and \(dr = r^{-1}d \).

Theorem 9.33. If a group \(G \) has order \(2p \) for an odd positive prime \(p \), then \(G \) is isomorphic to the cyclic group \(\mathbb{Z}_{2p} \) or the dihedral group \(D_p \).

Examples. (a) By Theorem 9.32, a group of order \(10 = 2 \cdot 5 \) is isomorphic to \(\mathbb{Z}_{10} \) or \(D_5 \).

(b) By Theorem 9.32, a group of order \(14 = 2 \cdot 7 \), is isomorphic to \(\mathbb{Z}_{14} \) or \(D_7 \).

Theorem 9.34. If \(G \) is a group of order 8, then \(G \) is isomorphic to one of \(\mathbb{Z}_8 \), \(\mathbb{Z}_4 \oplus \mathbb{Z}_2 \), \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \), \(D_4 \), or the quaternion group \(Q \).

Theorem 9.35. If \(G \) is a group of order 12, then \(G \) is isomorphic to one of \(\mathbb{Z}_{12} \), \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \), \(A_4 \), \(D_6 \), or the group \(T \) generated by elements \(a, b \) that satisfy \(|a| = 6 \), \(b^2 = a^3 \), \(ba = a^{-1}b \).