§2.4: Bifurcations

There are many kinds of bifurcations that can occur in a parameter dependent system of nonlinear equations.

We will give examples of two of them.

Example (Saddle-Node Bifurcation). Consider the nonlinear system

\[x' = \mu - x^2, \quad y' = -y. \]

Each equation can be solved explicitly, but we will use the geometric analysis approach to see how the solutions change as \(\mu \) is varied.

The phase line for \(y' = -y \) shows that \(y(t) \to 0 \) for all choices of initial \(y \) value.

For \(\mu < 0 \) we have that \(x' < -\mu \), so there are no equilibria, and \(x(t) \) decreases with bound.

For \(\mu = 0 \) we have one equilibrium at the origin with \(x' > 0 \) for \(x < 0 \) and \(x > 0 \) (so the equilibrium is unstable).

The Jacobian for the linearization at the origin (when \(\mu = 0 \)) is diagonal with entries 0 and \(-1\), which are the eigenvalues, and so the equilibrium is non-hyperbolic.
For $\mu > 0$ we have two equilibria $(x^*, 0)$ for $x^* = \pm \sqrt{\mu}$.

The Jacobian of the linearization at the equilibrium $(-\sqrt{\mu}, 0)$ is diagonal with entries $2\sqrt{\mu}$ and -1, and so it is a saddle point.

The Jacobian of the linearization at the equilibrium $(\sqrt{\mu}, 0)$ is diagonal with entries $-2\sqrt{\mu}$ and -1, and so it is a locally asymptotically stable node.

Hence at $\mu = 0$ we have a Saddle-Node Bifurcation.

Example (Hopf Bifurcation). Consider the nonlinear system

$$
\begin{align*}
x' &= -y + x(\mu - x^2 - y^2), \\
y' &= x + y(\mu - x^2 - y^2).
\end{align*}
$$

The only equilibrium is at the origin.

The Jacobian matrix is

$$
A = \begin{bmatrix} \mu & -1 \\ 1 & \mu \end{bmatrix}.
$$

The characteristic equation of A is

$$
\lambda^2 - 2\mu + (\mu^2 + 1) = 0.
$$

The eigenvalues are

$$
\lambda = \frac{2\mu \pm \sqrt{4\mu^2 - 4(\mu^2 + 1)}}{2} = \mu \pm i.
$$

For $\mu > 0$ the equilibrium is an unstable spiral point,

For $\mu = 0$ the equilibrium is a linear center.

For $\mu < 0$ the equilibrium is a locally asymptotically stable spiral point.

What does the phase portrait look like when $\mu = 0$? And, what happens to the phase portrait as μ passes through $\mu = 0$ from negative to positive?

These can be explicitly answered by transforming the equations into polar coordinates.
With \(x = r \cos \theta \), \(y = r \sin \theta \) we have
\[
xx' + yy' = r \cos \theta (r' \cos \theta - r \theta' \sin \theta) + r \sin \theta (r' \sin \theta + r \theta' \cos \theta)
\]
\[
= rr' \cos^2 \theta - r^2 \theta^2 \cos \theta \sin \theta + RR' \sin^2 \theta + r^2 \sin \theta \cos \theta
\]
\[
= rr'
\]
and
\[
xy' - yx' = r \cos \theta (r' \sin \theta + r \theta' \cos \theta) - r \sin \theta (r' \cos \theta - r \theta' \sin \theta)
\]
\[
= rr' \cos \theta \sin \theta + r^2 \theta' \cos^2 \theta - rr' \sin \theta \cos \theta + r^2 \theta' \sin^2 \theta
\]
\[
= r^2 \theta'.
\]
Using the nonlinear system we have
\[
rr' = xx' + yy' = -xy + x^2(\mu - x^2 - y^2) + xy + y^2(\mu - x^2 - y^2) = r^2(\mu - r^2)
\]
and
\[
r^2 \theta' = xy' - yx' = x^2 + xy(\mu - x^2 - y^2) + y^2 - xy(\mu - x^2 - y^2).
\]
The nonlinear system in polar coordinates is
\[
r' = r(\mu - r^2), \quad \theta' = 1.
\]
To understand the nonlinear system, we apply the geometric analysis approach to \(r' = r(\mu - r^2) \) (although we could solve this separable equation as the book does).

For \(\mu < 0 \) we have that \(r' < 0 \) for all \(r > 0 \), so that all non-equilibrium solutions in the \(xy \)-plane tend to the origin (which in the linearization is locally asymptotically stable equilibrium).

For \(\mu = 0 \), we have that \(r' < 0 \) for all \(r > 0 \), so that all non-equilibrium solutions in the \(xy \)-plane tend to the origin, and so the origin is a not a center (although the linearization is a center).
For each fixed $\mu > 0$, the constant function $r(t) = \sqrt{\mu} > 0$ is a solution of $r' = r(\mu - r^2)$.
Coupled with $\theta' = 1$, we get a periodic solution $r(t) = \sqrt{\mu}$, $\theta(t) = t + \theta_0$ in the xy-plane.

The sign of $r' = r(\mu - r^2)$ when $0 < r < \sqrt{\mu}$ is positive, so solutions starting near the origin in the xy-plane spiral away from it (the origin is an unstable spiral point), and move towards the periodic orbit $r = \sqrt{\mu}$.

The sign of $r' = r(\mu - r^2)$ when $r > \sqrt{\mu}$ is negative, so solutions starting with large r value in the xy-plane spiral towards the period orbit $r = \sqrt{\mu}$.

The periodic orbit $r = \sqrt{\mu}$ is called a **stable limit cycle**.

The appearance of a stable (unstable) limit cycle from a stable (unstable) equilibrium as the parameter varies is known as a Hopf bifurcation.